UA-45667900-1
Showing posts with label Omega-3. Show all posts
Showing posts with label Omega-3. Show all posts

Tuesday 19 May 2015

ASD variants - (mis and missed) diagnoses. Calcium ion channel dysfunctions Cav1.1, 1.2, 1.3 and 1.4


This post serves to introduce some ideas relevant to a post that is will shortly arrive on calcium ion channel dysfunctions (Cav1.1, 1.2, 1.3 and 1.4).

As we have seen, nearly all behavioral and psychiatric disorders are just diagnosed based on observation.  Only in very rare cases is the underlying biological problem diagnosed.  So it is fair to say that these are not accurate medical diagnoses.

Under the wide umbrella term of ASD are likely hundreds of thousands of  discrete variants, since ASD generally results from the combination of multiple hits/dysfunctions.  A single one of these dysfunctions is usually not enough to trigger autism, but some may indeed trigger something else noticeable.  A small number of individual hits, like Fragile-X and Retts can trigger autism, but these are the exception.


Mis and Missed diagnoses

One reader of this blog received a diagnosis for his child as “late onset regressive autism or possible childhood disintegrative disorder”.  Neither of these options is very good, since you are talking about an entirely typical child who, after the age of four, begins to regress and lose his acquired skills.

After a long struggle, he found the biological diagnosis, which is mitochondrial disease.  After a few months of the Richard Kelley (from Johns Hopkins), therapy the regression was halted and now new skills are again being acquired.

This is another example of how unacceptable simple observational diagnoses are.  What would have happened if the reader had not stumbled upon this blog and then later sought out help from the leading experts (just look on my Dean’s list)?



Attention Deficit Disorder (ADHD)

ADHD is very commonly diagnosed in the US, much more so than in other countries.  More severe cases of ADHD look much like ASD, which is why I call them autism-lite.

Another group of ADHD may indeed be purely behavioral – too much time with smart phones, iPads and video games.  This is supported by the fact that the data on incidence of ADHD shows that a large group of children with ADHD, “grow out of it”, or were misdiagnosed in the first place.

However, it does look like there is another group of ADHD which is biological, but may be different to autism.  On this subject I will bring you the comments of Dr. Manuel Casanova, a neurologist and along with that, thoughtful and knowledgeable about autism. 

Then we have the recurring clinical trials on high EPA/DHA fish oil, which really do show an effect in most trials in ADHD, but fail in most trials in autism.  This will be developed further in the later post on calcium channels.  The suggested view is that either the vitamin A, or the omega 3 oil, is somehow helping and even perhaps some people have a problem absorbing some types of vitamin A.  I was always unconvinced by this. 

However, it has now been shown that the EPA in fish oil has an effect on certain L-type calcium channels.  If you had a mild dysfunction (channelopathy) of one of the L-type calcium channels, then a big enough dose of EPA might have an effect on them.  This becomes more interesting when you learn that some doctors in the US think that dyslexia is another autism-lite.

One suggested cause of dyslexia is visual deficit that makes reading difficult, but it also accompanied by a difficulty seeing in the dark.  This night blindness is known to be caused by vitamin A deficiency (or an inability to absorb it properly) and also by an ion channel dysfunction in Cav1.4.

It appears that the high EPA fish oil would increase vitamin A and also affect the function of Cav1.4.  The calcium ion channel Ca1.4 is widely expressed in your eyes.

Another interesting point is that it is thought that a dysfunction in one type of Calcium channel will often affect the function of others.  This is important because when you look at the effect of dysfunctions in these channels you will a listing including:-

·        Autism (Timothy Sydrome)
·        Mood disorder
·        Depression
·        Bipolar

As well as things like

·        Night blindness
·        Heart defects (Timothy Sydrome)

We also should note that many people (without autism) with sight problems claim improvement from taking high EPA fish oil.



Dyslexia

Dyslexia is the most common learning disability. It affects about 3 to 7 percent of people. While it is diagnosed more often in males, some believed it affects males and females equally. Up to 20 percent of the population may have some degree of symptoms

Dyslexia and attention deficit hyperactivity disorder (ADHD) commonly occur together; about 15 percent of people with dyslexia also have ADHD and 35 percent of those with ADHD have dyslexia.

The causes appear to be genetic and epigenetic. For example the gene KIAA0319


People usually think of dyslexia only in children, but that may be because many adults do not read very much.  Or do they "grow out of it".



ADHD

“It affects about 6–7% of children when diagnosed via the DSM-IV criteria and 1–2% when diagnosed via the ICD-10 criteria.  Rates are similar between countries and depend mostly on how it is diagnosed. ADHD is diagnosed approximately three times more in boys than in girls. About 30–50% of people diagnosed in childhood continue to have symptoms into adulthood.”

So it would seem that most people “grow out” of ADHD 



Dr. Manuel Casanova

Dr. Manuel Casanova is a neurologist and along with that is clever, thoughtful and knowledagable about autism.  He looks at measurable anatomical differences and how these may be related to behaviour.  So he is more into the consequences of unchangeable differences in brains.

If you start looking at ion channels and transporters as being key drivers in behaviour then you have the chance to make alterations.  We saw that the same applies to fine tuning the function and indeed structure of key neurotransmitter receptors.

In lay terms, Manuel is showing how brains are indeed “hardwired” differently in many cases of autism, ADHD and even dyslexia.  This might reinforce the old view that really it is “case closed” and nothing more can be done.

However the really clever scientists looking in greater depth show us that notwithstanding some structural variation, much of the problem lies in the aspects of the brain that can be modified and indeed some are constantly in a state of change, for example the shape of dendritric spines and indeed the very substructure of those  GABAA receptors.

He groups dyslexia with ADHD and sees them as fundamentally different to autsim.  Having said that, Manuel tells us that attention disorders may be found in close to 30% of autistic individuals


 He has his own blog.



I suggest you read his full article, but here are some excerpts:-


“Claiming that there is comorbidity across neurodevelopmental disorders based on a single behavioral symptom negates many aspects of the individuality of each condition. In this regard, there are marked differences in the cognitive styles of dyslexic or ADHD individuals and those within the autism spectrum. Dyslexics enjoy a top-down cognitive style, tend to be holistically-oriented and have a gestalt processing bias (e.g., they see the forest but lose track of the individual trees). They are considered to have strong central coherence and excel in synthesizing sensory or cognitive experiences. Individuals within the autism spectrum enjoy a bottom-up cognitive style which makes them detail-oriented. Thus, contrary to dyslexic/ADHD subjects, ASD individuals see the tree but tend to lose sight of the forrest. In addition, they have a local processing bias with weak central coherence and appear to be good analyzers.”






“The above related differences in cognitive style appear to have anatomical correlates. As compared to neurotypicals, dyslexics tend to have smaller brain volumes with a concomitant striking increase in the size of their corpus callosum (the white matter projections that join homologous areas in both cerebral hemispheres). In addition, they have a simplification of their convolutional pattern and their cortical modules for information processing (minicolumns) are wider than expected. We find completely the opposite in patients within the autism spectrum.”



Yet more labels

Since we will be looking at calcium channels and one thing that does affect them is EPA, we should look at another label, dyspraxia, which also is reportedy  affected by fatty acids.
  
Fatty Acids in Dyslexia, Dyspraxia, ADHD and the Autistic Spectrum





What is Dyspraxia, also known as Developmental Coordination Disorder (DCD) ?

Dyspraxia, also known as Developmental coordination disorder (DCD), is is a chronic neurological disorder beginning in childhood that can affect planning of movements and co-ordination as a result of brain messages not being accurately transmitted to the body.

People with developmental coordination disorder sometimes have difficulty moderating the amount of sensory information that their body is constantly sending them, so as a result dyspraxics are prone to sensory overload and panic attacks.
Many dyspraxics struggle to distinguish left from right, even as adults, and have extremely poor sense of direction generally.

Moderate to extreme difficulty doing physical tasks is experienced by some dyspraxics, and fatigue is common because so much extra energy is expended while trying to execute physical movements correctly. Some (but not all) dyspraxics suffer from hypotonia, low muscle tone, which like DCD can detrimentally affect balance.


Gross motor control

Whole body movement, motor coordination, and body image issues mean that major developmental targets including walking, running, climbing and jumping can be affected. The difficulties vary from person to person and can include the following:


  • Poor timing
  • Poor balance (sometimes even falling over in mid-step). Tripping over one's own feet is also common.
  • Difficulty combining movements into a controlled sequence.
  • Difficulty remembering the next movement in a sequence.
  • Problems with spatial awareness, or proprioception.
  • Some people with developmental coordination disorder have trouble picking up and holding onto simple objects such as pencils, owing to poor muscle tone and/or proprioception.
  • This disorder can cause an individual to be clumsy to the point of knocking things over and bumping into people accidentally.
  • Some people with developmental coordination disorder have difficulty in determining left from right.
  • Cross-laterality, ambidexterity, and a shift in the preferred hand are also common in people with developmental coordination disorder.
  • Problems with chewing foods.

Fine motor control


Fine-motor problems can cause difficulty with a wide variety of other tasks such as using a knife and fork, fastening buttons and shoelaces, cooking, brushing one's teeth, styling one's hair, shaving, applying cosmetics, opening jars and packets, locking and unlocking doors, and doing housework.

Difficulties with fine motor co-ordination lead to problems with handwriting, which may be due to either ideational or ideo-motor difficulties. Problems associated with this area may include:
  • Learning basic movement patterns.
  • Developing a desired writing speed.
  • Establishing the correct pencil grip
  • The acquisition of graphemes – e.g. the letters of the Latin alphabet, as well as numbers.

Associated disorders


People who have developmental coordination disorder may also have one or more of these co-morbid problems:




Dysjustabouteverything (DJE)

If you consider the early years of classic autism, you will see that, in many cases, it includes all of the above disorders, even hypertonia.

But some people are otherwise pretty much typical/normal, are diagnosed with a single disorder like dyscalculia.

The problem is that these are all just observational diagnoses.  Does something biological underlie and connect them?  I think it does.

An autistic person’s struggles with mathematics may be more to do with a problem of understanding the language used to explain it.  This is why, in many cases, they struggle to move beyond counting.  Special methods of teaching maths have been created for such people, but they only take you to an elementary level.

If you have Asperger’s, you have no problem with the language used to explain the concepts or to frame the questions.  Some people with Asperger’s excel at mathematics.

The same is true for dysgraphia, autistic people tend to have very scruffy handwriting, but does this mean that they have dysgraphia? 

Hypotonia is an interesting one.  Many parents report low muscle tone and indeed DAN doctors actually treat it (apparently with Creatine).  I think hypotonia, if present in autism, is likely to be connected to the disruption in the various growth factors that has occurred and this itself may related to GABAB dysfunctions. (I mentioned this connection in an earlier post).  In Monty, aged 11 with ASD, when he was a baby he had Hypertonia.  He was big and all muscle.  As he got older he slid down from the 80-90Th percentile to the 20th percentile.  This fits one very distinct pattern of classic autism.

In the case of Monty, almost all the earlier signs of Dysjustabouteverything have now vanished.  Is this always the case?  Why would that happen in some people and not others?  Did his Polypill interventions play a role?



To investigate

What we need to know is whether there is a common link between all these various “dys-disorders”.

Probably in some (mis/over-diagnosed) people there is no link; but in others there may well be.

In some people there really is a link.  I did not tell you that my old “favourite”, hypokalemic periodic paralysis (HPP), can be caused by a Cav1.1 dysfunction.  HPP-lite is something called hypokalemic sensory overload.  In a little experiment I demonstrated that autistic sensory overload can be just hypokalemic sensory overload.  You just need 250 mg of potassium and a disturbing noise or light to illustrate it.  This is also a symptom of what they call Dyspraxia.

So Cav1.1 associates with HPP (hypokalemic periodic paralysis) and by my inference, sensory overload and some hypotonia;  Cav1.2 associates directly with autism (Timothy Syndrome) and bipolar; Cav1.3 associates with mood disorders, depression, bipolar; Cav1.4 associates with night blindness and perhaps some dyslexia.
A dysfunction in one L-type channel (Cav1.1, Cav1.2, Cav1.3 and Cav1.4) can apparently cause dysfunction in the others.  This surprised me.

So if you have autism, is not surprising if you appear afraid of the dark, feel depressed, experience sensory overload and are not very muscular.

The good news is that much of this appears to be treatable.

For the scientists among you:-

CACNB2    

Voltage-dependent L-type calcium channel subunit beta-2 is a protein that in humans is encoded by the CACNB2 gene
http://www.ebi.ac.uk/interpro/entry/IPR005444


I did forget to remind readers that I see the label schizophrenia as just another name for adult onset autism.

So it is no surprise that adults with autism have a 22 times higher chance of also being diagnosed with schizophrenia compared to non-ASD people.  Note bipolar, OCD etc; and this does not include all those adults with autism who get forgotten.









Conclusion

I am not suggesting “medicalizing” people with dyslexia, or indeed most with ADHD. 
However, it might be useful for somebody affected to know if Cav1.1 to 1.4 were dysfunctional, then at critical moments, like exam time at school, you could indeed give them some extra help.

People with dyslexia, and I presume other “dys-disorders” do often get given extra time at school for exams.  People with ADHD are often entitled to financial benefits in developed countries, and it has been suggested that these countries are the ones with high incidence of diagnosis.  In the US 11% of children and 4.4% of adults have a diagnosis.   ADHD has been medicalized in the U.S. since the 1960s.  In the UK, 3.62% of boys and 0.85% of girls have an ADHD diagnosis.  In France less than 0.5% of children are taking medication for ADHD.

Here is a nice quote:-

Why Are ADHD Rates 20 Times Higher in the U.S. Than in  France?

“it makes perfect sense to me that French children don't need medications to control their behavior because they learn self-control early in their lives. The children grow up in families in which the rules are well-understood, and a clear family hierarchy is firmly in place.

In French families, as Druckerman describes them, parents are firmly in charge of their kids—instead of the American family style, in which the situation is all too often vice versa.”



In the case of ADHD, it looks like the French have got it right; but not sadly for autism.

Knowing many different nationalities, I can certainly confirm that French parenting is much tougher than the UK or US variety.  The UK variety is very similar to the US, but without the liberal use of drugs for ADHD or indeed autism.

In tough cases of ADHD, that even French parenting cannot control, perhaps it really is a calcium channelopathy.  Perhaps in these cases a mild calcium channel blocker like fish oil, or indeed Olive Leaf Extract may be potent enough, so you could use these daily without the need for any prescription medication.

In any case, Verapamil, if shown effective, looks a much safer bet than the usual ADHD stimulants like Ritalin.  If your ADHD was caused by calcium channel dysfunction, it would likely later appear elsewhere in your body; all those years on stimulants would not have helped you.

Recall that Verapamil can also be effective in bipolar.








Monday 16 February 2015

Biotin & Triglycerides - why perhaps Fish Oil and Niacin may actually help a little in Autism & Schizophrenia

Far back in this blog, I wrote a post about fish oil.  Omega 3 oils are definitely good for your general health, but do they help with autism?  They are also claimed to help with ADHD and improve your NT child’s cognitive performance.

On critical review of the evidence, it seemed that the benefit was far from conclusive.  There was one very positive study, that neither the authors nor anyone else could repeat.

The following review of the literature by the University of Maryland show that, as with autism, studies on fish oil in depression, ADHD, bipolar and schizophrenia show conflicting results.


Some of the “cognitive enhancing” fish oil products are extremely expensive and I showed that regular fish consumption was far cheaper and likely to be as effective.

There is an issue of just how big an effect you are looking for.  We can all imagine tiny effects, but you really want an effect that everyone else notices.

Monty, aged 11 with ASD, eats lots of fish, mainly because he loves it.  He is not at all put off by those little bones.

The effect of fish oil on Monty was not noticeable.


Biotin

A recent post contained a study from Greece, where they found a remarkably high proportion of kids with ASD with a biotin deficiency.  This had not shown up on the standard test, because the standard test is strangely not for biotin at all; it tests for biotinidase, a related enzyme.

Identifying a biotin deficiency is not easy, blood tests are not helpful and you have to look at certain compounds found in urine.  As a result your local laboratory may not offer a useful test for biotin.

Since supplementation with pharmacological doses of biotin is known to be harmless, the practical way forward is to try it.

In the midst of looking at the relative effect of different primary antioxidants, I was substituting one thiol antioxidant (ALA) for another (NAC) to see if there was any obvious difference.  I could give lots of reasons, with scientific papers to back them up, as to why 0.6g of ALA plus 1.8g of NAC might be “better” than 2.4g of NAC, but it is not.  If anything, it might be worse.

Then I tried Carnosine in combination with NAC and again I could see absolutely no effect.

Then I decided to go back to my original NAC regime and add the biotin that had been on the shelf since Christmas. Very surprisingly, the effect that I thought might show up with ALA, showed up with biotin.  

It was not a huge effect, but a small step forward, that Monty’s assistant at school also noticed.  He was more calm and altogether more "normal". 

Does this mean Monty has a biotin deficiency?  It is of course possible.  In the Greek study 4% of the kids were thought to have such a deficiency, far more than expected, and most did respond, in varying degrees, to biotin supplements.  Unfortunately they only gave the biotin to the 4%; I would like to know what would have happened to the remaining 96%.


Biotin lowers Triglycerides and Elevated Triglycerides are associated with Mood Disorders   

Biotin is a B vitamin, but very little is actually known about it.

Then I found the link I was looking for.

Biotin does not lower cholesterol, but it does reduce (in a big way) your Triglycerides.

Several studies have shown that elevated Triglycerides are associated with all kinds of disorders: bipolar, depression and schizophrenia.  These studies suggested a causal link between the mood disorder and the elevated triglyerides.

Other Effects on Mood

          Besides depression, high levels of triglycerides are also correlated with other affective disorders including bipolar disorder (manic depression), schizoaffective disorders, aggression and hostility. In fact, the poor nutritional status of many depressed persons, who often have diets high in fats, can be improved to lessen the depression, according to Charles Glueck, MD, medical director of the Cholesterol Center of Jewish Hospital in Cincinnati.
"We have shown that in patients with high triglycerides who were in a depressive state, the more you lower the triglycerides, the more you alleviate the depression," Glueck wrote in a 1993 article in Biological Psychiatry.
According to the U.S. Centers for Disease Control and Prevention (CDC), most Americans aren't aware of the role triglycerides play in physical and mental health. A five-year study of more than 5,000 Americans found that 33 percent of them had borderline high triglyceride levels.


Improvement in symptoms of depression and in an index of life stressors accompany treatment of severe hypertriglyceridemia.


In 14 men and nine women referred because of severe primary hypertriglyceridemia, our specific aim in a 54-week single-blind treatment (Rx) period was to determine whether triglyceride (TG) lowering with a Type V diet and Lopid would lead to improvement in symptoms of depression, improvement in an index of life stressors, change in locus of control index, and improved cognition, as serially tested by Beck (BDI), Hassles (HAS) and HAS intensity indices, Locus of Control index, and the Folstein Mini-Mental status exam. On Rx, median TG fell 47%, total cholesterol (TC) fell 15%, and HDLC rose 19% (all p < or = 0.001). BDI fell at all nine Rx visits (p < or = 0.001), a major reduction in a test of depressive symptoms. The HAS score also fell at all nine visits (p < or = 0.05 - < or = 0.001). Comparing pre-Rx baseline BDI vs BDI at 30 and 54 weeks on Rx, there was a major shift towards absence or amelioration of depressive symptoms (chi 2= 5.9, p = 0.016). On Rx, the greater the percent reduction in TG, the greater the percent fall in BDI (r = 0.47, p < or = 0.05); the greater the percent reduction in TC, the greater the percent fall in HAS (r = 0.41, p < or = 0.05). Improvement in the BDI and HAS accompanied treatment of severe hypertriglyceridemia, possibly by virtue of improved cerebral perfusion and oxygenation. There may be a reversible causal relationship between high TG and symptoms of depression.


Mood symptoms and serum lipids in acute phase of bipolar disorder inTaiwan.

 

Abstract

Serum lipids have been found to play important roles in the pathophysiology of mood disorders. The aim of the present study was therefore to investigate the relationship between symptom dimensions and serum cholesterol and triglyceride levels, and to explore correlates of lipid levels during acute mood episodes of bipolar I disorder in Taiwan. Measurements were taken of the serum cholesterol and triglyceride levels in patients with bipolar I disorder hospitalized for acute mood episodes (68 manic, eight depressive, and six mixed). The relationships between serum lipids levels and various clinical variables were examined. The mean serum levels of cholesterol (4.54 mmol/L) and triglycerides (1.16 mmol/L) of sampled patients were comparable to those of the general population in the same age segment. Severe depressive symptoms and comorbid atopic diseases were associated with higher serum cholesterol levels. A negative association was noted between serum triglyceride levels and overall psychiatric symptoms. Compared with previous studies on Western populations, racial differences may exist in lipids profiles of bipolar disorder patients during acute mood episodes. Increased serum cholesterol levels may have greater relevance to immunomodulatory system and depressive symptoms, in comparison with manic symptoms.


Biotin supplementation reduces plasma triacylglycerol and VLDL in type 2 diabetic patients and in non-diabetic subjects with hypertriglyceridemia.



Abstract

Biotin is a water-soluble vitamin that acts as a prosthetic group of carboxylases. Besides its role as carboxylase prosthetic group, biotin regulates gene expression and has a wide repertoire of effects on systemic processes. The vitamin regulates genes that are critical in the regulation of intermediary metabolism. Several studies have reported a relationship between biotin and blood lipids. In the present work we investigated the effect of biotin administration on the concentration of plasma lipids, as well as glucose and insulin in type 2 diabetic and nondiabetic subjects. Eighteen diabetic and 15 nondiabetic subjects aged 30-65 were randomized into two groups and received either 61.4 micromol/day of biotin or placebo for 28 days. Plasma samples obtained at baseline and after treatment were analyzed for total triglyceride, cholesterol, very low density lipoprotein (VLDL), glucose and insulin. We found that the vitamin significantly reduced (P=0.005) plasma triacylglycerol and VLDL concentrations. Biotin produced the following changes (mean of absolute differences between 0 and 28 day treatment+/-S.E.M.): a) triacylglycerol -0.55+/-0.2 in the diabetic group and -0.92+/-0.36 in the nondiabetic group; b) VLDL: -0.11+/-0.04 in the diabetic group and -0.18+/-0.07 in the nondiabetic group. Biotin treatment had no significant effects on cholesterol, glucose and insulin in either the diabetic or nondiabetic subjects. We conclude that pharmacological doses of biotin decrease hypertriglyceridemia. The triglyceride-lowering effect of biotin suggests that biotin could be used in the treatment of hypertriglyceridemia.





Abstract
In addition to its role as a carboxylase cofactor, biotin modifies gene expression and has manifold effects on systemic processes. Several studies have shown that biotin supplementation reduces hypertriglyceridemia. We have previously reported that this effect is related to decreased expression of lipogenic genes. In the present work, we analyzed signaling pathways and posttranscriptional mechanisms involved in the hypotriglyceridemic effects of biotin. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet (1.76 or 97.7 mg of free biotin/kg diet, respectively for 8 weeks after weaning. The abundance of mature sterol regulatory element-binding protein (SREBP-1c), fatty-acid synthase (FAS), total acetyl-CoA carboxylase-1 (ACC-1) and its phosphorylated form, and AMP-activated protein kinase (AMPK) were evaluated in the liver. We also determined the serum triglyceride concentrations and the hepatic levels of triglycerides and cyclic GMP (cGMP). Compared to the control group, biotin-supplemented mice had lower serum and hepatic triglyceride concentrations. Biotin supplementation increased the levels of cGMP and the phosphorylated forms of AMPK and ACC-1 and decreased the abundance of the mature form of SREBP-1c and FAS. These data provide evidence that the mechanisms by which biotin supplementation reduces lipogenesis involve increased cGMP content and AMPK activation. In turn, these changes lead to augmented ACC-1 phosphorylation and decreased expression of both the mature form of SREBP-1c and FAS. Our results demonstrate for the first time that AMPK is involved in the effects of biotin supplementation and offer new insights into the mechanisms of biotin-mediated hypotriglyceridemic effects.


Triglycerides are also elevated in autism:-



Abstract

We hypothesize that autism is associated with alterations in the plasma lipid profile and that some lipid fractions in autistic boys may be significantly different than those of healthy boys. A matched case control study was conducted with 29 autistic boys (mean age, 10.1 +/- 1.3 years) recruited from a school for disabled children and 29 comparable healthy boys from a neighboring elementary school in South Korea. Fasting plasma total cholesterol (T-Chol), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), the LDL/HDL ratio, and 1-day food intakes were measured. Multiple regression analyses were performed to assess the association between autism and various lipid fractions. The mean TG level (102.4 +/- 52.4 vs 70.6 +/- 36.3; P = .01) was significantly higher, whereas the mean HDL-C level (48.8 +/- 11.9 vs 60.5 +/- 10.9 mg/dL; P = .003) was significantly lower in cases as compared to controls. There was no significant difference in T-Chol and LDL-C levels between cases and controls. The LDL/HDL ratio was significantly higher in cases as compared to controls. Multiple regression analyses indicated that autism was significantly associated with plasma TG (beta = 31.7 +/- 11.9; P = .01), HDL (beta = -11.6 +/- 2.1; P = .0003), and the LDL/HDL ratio (beta = 0.40 +/- 0.18; P = .04). There was a significant interaction between autism and TG level in relation to plasma HDL level (P = .02). Fifty-three percent of variation in the plasma HDL was explained by autism, plasma TG, LDL/HDL ratio, and the interaction between autism and plasma TG level. These results indicate the presence of dyslipidemia in boys with autism and suggest a possibility that dyslipidemia might be a marker of association between lipid metabolism and autism.


Omega-3 Oil and Niacin in Schizophrenia

Like Autism, Schizophrenia is another observational diagnosis, with many different underlying genetic and environmental causes.  I keep referring to it as adult-onset autism.  It is also characterized by oxidative stress.

I found it interesting that two very widely used therapies for schizophrenia are omega-3 fish oil and high doses of niacin.  2 g a day of NAC is another common therapy in schizophrenia.

The clinical trials of omega-3 oil in schizophrenia, are just like the ones in autism, far from conclusive.  Yet people with schizophrenia continue to buy the expensive EPA fish oils, just like many parents of children with autism.

Another very popular treatment is Niacin.

Niacin does many things but these include increasing your HDL (good) cholesterol, reduce LDL (bad) cholesterol and, importantly, can reduce triglycerides by up to 50%.



Niacin in Anxiety



Niacin in autism

People do use high dose niacin and niacinamide in autism, but in general niacin levels are totally normal in people with autism, according to this study:-


For the vitamins, the only significant difference was a 20% lower biotin (p < 0.001) in the children with autism. There were possibly significant (p < 0.05) lower levels of vitamin B5, vitamin E, and total carotenoids. Vitamin C was possibly slightly higher in the children with autism. Vitamin B6 (measured as the active form, P5P, in the RBC) had an unusually broad distribution in children with autism compared to controls (see Figure Figure1),1), with the levels in the children with autism having 3 times the standard deviation of the neurotypical children.

Niacin was very similar in the autism group (7.00 μg/l and the control group (7.07 μg/l)

Other interesting findings highlighted the usual metabolic differences:-

·        ATP, NADH, and NAHPH were significantly different between the autism and neurotypical groups
·        Sulfation, methylation, glutathione, and oxidative stress biomarkers which were significantly different between the autism and neurotypical groups
·        Amino Acids which were significantly different between the autism and neurotypical groups, rescaled to the average neurotypical value



Peter Triglyceride Hypothesis in Autism & Schizophrenia

Elevated triglycerides in autism/schizophrenia may contribute to behavioral/mood problems.  The lipid contribution to the dysfunction may be correlated to elevation of triglycerides.  In other words triglycerides aggravate the existing disorder.

Some CAM treatments currently used in autism/schizophrenia, including high dose niacin, high dose biotin and high dose omega 3 oils may be effective due to their ability to lower triglycerides.

Biotin may be the safest, cheapest and most effective option to reduce triglycerides and improve mood/behavior.

The underlying cause of lipid dysfunction in autism/schizophrenia is the ongoing oxidative stress.


Fish oil is claimed to be good for your heart, but it has been shown not to affect cholesterol levels.  In some studies it did lower triglycerides.  In some countries doctors prescribe omega-3 oil to patients with stubbornly high triglycerides.  Perhaps they should read the research and try biotin?


  

Other functions of biotin


Biotin does have other more complex functions and the triglycerides may, so to speak, be a red herring.

Regulation of gene expression by biotin (review).

Abstract

In mammals, biotin serves as coenzyme for four carboxylases, which play essential roles in the metabolism of glucose, amino acids, and fatty acids. Biotin deficiency causes decreased rates of cell proliferation, impaired immune function, and abnormal fetal development. Evidence is accumulating that biotin also plays an important role in regulating gene expression, mediating some of the effects of biotin in cell biology and fetal development. DNA microarray studies and other gene expression studies have suggested that biotin affects transcription of genes encoding cytokines and their receptors, oncogenes, genes involved in glucose metabolism, and genes that play a role in cellular biotin homeostasis. In addition, evidence has been provided that biotin affects expression of the asialoglycoprotein receptor and propionyl-CoA carboxylase at the post-transcriptional level. Various pathways have been identified by which biotin might affect gene expression: activation of soluble guanylate cyclase by biotinyl-AMP, nuclear translocation of NF-kappaB (in response to biotin deficiency), and remodeling of chromatin by biotinylation of histones. Some biotin metabolites that cannot serve as coenzymes for carboxylases can mimic biotin with regard to its effects on gene expression. This observation suggests that biotin metabolites that have been considered "metabolic waste" in previous studies might have biotin-like activities. These new insights into biotin-dependent gene expression are likely to lead to a better understanding of roles for biotin in cell biology and fetal development.


It does appear that biotin is more important than generally appreciated. 



Conclusion

In earlier posts I highlighted that elevated cholesterol is a bio-marker for inflammation.  In a large sub-group in autism, cholesterol is elevated.

In today’s post we looked at  a different type of lipid, triglycerides, they have a different role to cholesterol.  Not surprisingly the lipid profile is dysfunction, since it is closely linked to oxidative stress, which appears to be at the root of many problems in autism.

It is extremely easy and inexpensive to check your lipid profile (LDL, HDL and triglycerides); if elevated, there are safe established ways to bring things back to “normal”.

Parents seeing a small positive effect with their fish oil supplements might consider saving a lot of money and seeing if an extremely inexpensive biotin (5mg) supplement has an equal or greater effect.  The cost of biotin would be $2 a month.  The cost of fish oil with anything like the concentration used in the more effective trials (0.84g EPA and 0.7g DHA) will cost around $50 a month and may not lower triglycerides by as much as the cheap biotin.

By measuring the lipid profile before and after, you will be able to determine for yourself the relative merits.

Niacin also has been shown to improve mood/anxiety.  It is used by people with autism and schizophrenia.  Niacin is also extremely effective at reducing triglycerides.  High doses of Niacin can be accompanied by side effects and so use is discouraged.

Biotin levels do seem to be slightly low in autism.  Effective methods of accurately diagnosing deficiency are disputed.  Biotin is very effective at reducing triglycerides.

Elevated triglycerides have been associated with mood disorders and depression.

It seems plausible that the benefits from Omega-3 , niacin and biotin stem from their effectiveness in reducing triglycerides.


Biotin would seem to be a very cost effective and safe way to achieve this, without the side effects of niacin.  

Biotin also appears to have other key functions, including transcription of cytokine genes. Over expression of pro-inflammatory cytokines is a common feature of autism.