UA-45667900-1

Wednesday 15 April 2015

Boosting “Tregs” in Autism, IBD, MS and even Obesity with Short-Chain Fatty Acids (SCFAs)

 T Rex - for what turned out to be rather a monster post


If the title of this post already makes sense, you probably do not need to read it.

It is about regulatory T cells (Tregs), which are an interesting way to treat what I have termed the over-activated immune system in autism.  The same ideas can be extended to other conditions related to mast cells, and also potentially Multiple Sclerosis (MS), Irritable bowel Disease (IBD) and even obesity.


Take Home Summary

For those more interested in what can be done, rather than why, here is the conclusion from this post:-

There are at least four possible ways to increase the number of regulatory T cells (Tregs), which should reduce pro-inflammatory cytokines (particularly IL-6) and increase anti-inflammatory cytokines (like IL-10).  

It should also reduce obesity, protect against diabetes and protect against organ damage in those already diabetic.

The simplest method is to increase production of small-chain fatty acids, which are the main metabolic products of bacteria fermentation that occurs naturally in the intestines.  You either eat more fibre or eat the specific bacteria, that causes the fermentation.

1.     Increase specific gut microbiota, namely B. fragilis and Clostridia

2.     Increase natural production of small-chain fatty acids (SCFAs) by eating more fibre.  Here using soluble maize fibre.

3.     Add supplemental SCFAs to your diet.  You just eat a source rich in some of the following:- Formic acid, Acetic acid, Propionic acid, Butyric acid (eat butter), Isobutyric acid, Valeric acid, Isovaleric acid

4.     Have a bone marrow transplant (not recommended)

  
For regular readers you may recall that B. fragilis appeared in an earlier post:-





Why this post?  - Bumetanide has stopped working

I recently received a comment from a lady who has tried Bumetanide in her child with autism.  After the expected two week delay, she noticed lots of positive behavioral changes, but sadly latter on the Bumetanide “stopped working”.

In the past I received comments about “NAC has stopped working”.

Since I also experienced the same effect of “everything stops working” in the summer, I know how these people feel.

In reality, as I eventually discovered, it is not that Bumetanide/NAC has stopped working, but rather something else has started working.  I wrote once about autism being a Dynamic Encephalopathy, which to be fair was Martha Herbert’s idea and not mine.  This is one reason that a new type of doctor will be needed if autism is ever to be treated.  It is a moving target.


In some types of autism it seems that the immune system can switch to an over-activated state and when in this state all my clever autism drugs appear to stop working.

In some people the problem is driven by so-called mast cellsMast cells play a key role in the inflammatory process. When activated they release granules and various hormonal mediators.  Histamine and the pro-inflammatory cytokine IL-6 are produced and this wreaks havoc in the brain, undoing all the good done by Bumetanide, NAC etc.

  
Regulatory T cells (Tregs)

In earlier posts I think I have exhaustively covered mast cells and to how to stabilize them.  However, I decided to look further back up the chain in the immune system at what may modulate the mast cells. Regulatory T cells caught my attention.


The regulatory T cells (Tregs), formerly known as suppressor T cells, are a subpopulation of T cells which modulate the immune system, maintain tolerance to self-antigens, and abrogate autoimmune disease. These cells generally suppress or downregulate induction and proliferation of effector T cells.
T regulatory cells are a component of the immune system that suppress immune responses of other cells. This is an important "self-check" built into the immune system to prevent excessive reactions.

The immune system must be able to discriminate between self and non-self. When self/non-self discrimination fails, the immune system destroys cells and tissues of the body and as a result causes autoimmune diseases. Regulatory T cells actively suppress activation of the immune system and prevent pathological self-reactivity, i.e. autoimmune disease

The immunosuppressive cytokines TGF-beta and Interleukin 10 (IL-10) have also been implicated in regulatory T cell function.
Recent evidence suggests that mast cells may be important mediators of Treg-dependent peripheral tolerance.

Regulatory T cells come in many forms with the most well-understood being those that express CD4, CD25, and Foxp3 (CD4+CD25+ regulatory T cells).
Foxp3+ Treg cells are known to produce IL-10 in the colon (Round and Mazmanian, 2010).




Abstract
Mast cell degranulation is a hallmark of allergic reactions, but mast cells can also produce many cytokines that modulate immunity. Recently, CD25(+) regulatory T cells (Tregs) have been shown to inhibit mast cell degranulation and anaphylaxis, but their influence on cytokine production remained unknown. In this study, we show that, rather than inhibit, Tregs actually enhance mast cell production of IL-6. We demonstrate that, whereas inhibition of degranulation was OX40/OX40 ligand dependent, enhancement of IL-6 was due to TGF-β. Interestingly, our data demonstrate that the Treg-derived TGF-β was surface-bound, because the interaction was contact dependent, and no TGF-β was detectable in the supernatant. Soluble TGF-β1 alone was sufficient to enhance mast cell IL-6 production, and these supernatants were sufficient to promote Th17 skewing, but those from Treg-mast cell cultures were not, supporting this being surface-bound TGF-β from the Tregs. Interestingly, the augmentation of IL-6 production occurred basally or in response to innate stimuli (LPS or peptidoglycan), adaptive stimuli (IgE cross-linking by specific Ag), and cytokine activation (IL-33). We demonstrate that TGF-β led to enhanced transcription and de novo synthesis of IL-6 upon activation without affecting IL-6 storage or mRNA stability. In vivo, the adoptive transfer of Tregs inhibited mast cell-dependent anaphylaxis in a model of food allergy but promoted intestinal IL-6 and IL-17 production. Consequently, our findings establish that Tregs can exert divergent influences upon mast cells, inhibiting degranulation via OX40/OX40 ligand interactions while promoting IL-6 via TGF-β.


Treg cells are reduced in people with Autism

The following study showed that 73% of subjects with autism had reduced levels of Tregs and in particular those with allergies of a familial history of autoimmune disease.

Those in the 73% with allergies are the ones who fit my over activated immune system category.



Abstract

Autoimmunity may have a role in autism, although the origins of autoimmunity in autism are unknown. CD4( +)CD25(high) regulatory T cells play an important role in the establishment of immunological self-tolerance, thereby preventing autoimmunity. The authors are the first to study the frequency of CD4(+)CD25( high) regulatory T cells in the blood of 30 autistic and 30 age- and sex-matched healthy children. Patients with autism had significantly lower frequency of CD4(+)CD25(high) regulatory T cells than healthy children (P < .001). These cells were deficient in 73.3% of children with autism. Autistic patients with allergic manifestations (40%) and those with a family history of autoimmunity (53.3%) had a significantly lower frequency of CD4(+)CD25(high) regulatory T cells than those without (P < .01 and P < .001, respectively). In conclusion, CD4(+)CD25( high) regulatory T cells are deficient in many children with autism. Deficiency of these cells may contribute to autoimmunity in a subgroup of children with autism. Consequently, CD4(+)CD25(high) regulatory T cells could be new potential therapeutic targets in these patients.

This study was about autism, but for some therapeutic insights we need to go over to Wendy Garrett’s lab at Harvard.


Her group are not researching autism, they are researching inflammation, particularly in the colon. 

But inflammation can occur anywhere.

Their recent work and some relating to it is covered in the following excellent article is from the Multiple Sclerosis Discovery Forum.  It is very readable.

  

Common compounds made by gut microbes that break down dietary fiber appear to boost the number and function of regulatory T cells (Tregs) in the colons of mice, a new study found. The findings expand the known ways that intestinal bacteria can influence Tregs, which can dial down an immune response and may be malfunctioning in autoimmune and inflammatory disorders, including multiple sclerosis (MS) and inflammatory bowel disease (IBD).

The microbial metabolites, known as short-chain fatty acids (SCFAs), restored the depleted Tregs of germ-free mice, the researchers reported. In mice with normal intestinal bacteria, supplemental SCFAs expanded the existing Treg population and activity. In a mouse model of colitis, SCFAs in drinking water reduced intestinal inflammation by enhancing Treg function.

"It's a terrific paper," said Sarkis Mazmanian, Ph.D., a microbiologist at the California Institute of Technology in Pasadena, in an interview with MSDF. Mazmanian first reported that PSA on the surface of B. fragilis converts CD4+ T cells into Foxp3+ Treg cells that produce IL-10 in the colon (Round and Mazmanian, 2010). "We have been working with a specific organism that makes a molecule unique to B. fragilis that induces Tregs and suppresses inflammation, and Wendy has discovered a more general metabolite produced by multiple bacterial groups that does something similar."

The study builds on discoveries (Nagano et al., 2012) showing that Tregs are dependent upon gut microbiota, specifically B. fragilis and Clostridia, Garrett told MSDF in an email. "We all may not have B. fragilis," she wrote. "In addition, human and mice both have many different strains of Clostridia. However, all healthy humans have regulatory T cells. Since SCFA are such abundant microbial metabolites, we hypothesized that SCFA may regulate Tregs in the colon."

"SCFA exert so many different effects on Tregs by altering molecules that affect the structure of DNA, making some areas of the DNA more open and available for transcription," Garrett wrote in an email. "In this way, SCFA can affect several different Treg functions."

For Garrett and others, the findings advance the therapeutic potential of dietary-based interventions using the SCFA mix and perhaps other molecules that boost signaling through GPR43 to improve Treg function in patients with inflammatory bowel disease and other autoimmune diseases. The concept was also advanced in another new study from Kenya Honda, M.D., Ph.D., of the RIKEN Center for Integrative Medical Sciences in Yokohama, Japan, in a recent Nature paper. A mixture of 17 strains of human-derived Clostridia designed to expand and differentiate Tregs relieved symptoms of colitis and allergic diarrhea in mouse models (Atarashi et al., 2013).

The full paper is here:-




So much for the colon, what about the effect of increasing Treg in autism?

We already know that in the MIA (maternal immune activation) mouse model of autism, treating mice pups with B. fragilis reduces their autistic behaviours.
'Friendly' bacteria treat autism-like symptoms in mice 

That is a pretty good start, since we know that B. fragilis causes more SCFAs to be produced in the intestines.


The most effective way to reset an immune system would be a bone marrow transplant.  The following article from SFARI looks about what happens in mice. 


  
An altered immune system can cause autism-like behaviors, suggests a study published 31 July in the Proceedings of the National Academy of Sciences1. The researchers found that a bone marrow transplant, which restores the animals’ immune system, alleviates some of their symptoms, including anxiety and repetitive behavior.

Such transplants are too dangerous for treating people with autism, but the findings suggest other treatments targeting immune cells, the researchers say.
When confronted with foreign cells — for example, when infected with a virus — the body typically activates immune cells called T cells to release signaling molecules called cytokines. A different set of T cells, called regulatory T cells, then keep that immune response in check by suppressing the activated T cells.
In the study, researchers injected pregnant mice with a mock flu virus that sets off their immune response. The offspring carry overly responsive T cells and have too few regulatory T cells throughout their lifetime, the study found. These two things together point to an immune system that's overly reactive.



Studies on the effect of Small Chain Fatty Acids (SCFAs) on Humans

The good news is that numerous studies show that Wendy Garrett’s findings seem to apply far beyond the colon.

The reason is that SCFAs are able to cross the Intestinal Epithelium (i.e. cross from the gut to the bloodstream)



CONCLUSIONS Data suggest a potential therapeutic value of Tregs to improve insulin resistance and end organ damage in type 2 diabetes by limiting the proinflammatory milieu.




Abstract
Short-chain fatty acids (SCFAs) are the main products of dietary fiber fermentation and are believed to drive the fiber-related prevention of the metabolic syndrome. Here we show that dietary SCFAs induce a peroxisome proliferator-activated receptor (PPAR) γ-dependent switch from lipid synthesis to utilization. Dietary SCFA supplementation prevented and reversed high-fat diet-induced metabolic abnormalities in mice by decreasing PPARγ expression and activity. This increased the expression of mitochondrial uncoupling protein 2 and raised the AMP/ATP ratio, thereby stimulating oxidative metabolism in liver and adipose tissue via AMP-activated protein kinase. The SCFA-induced reduction in body weight and stimulation of insulin sensitivity were absent in mice with adipose-specific disruption of PPARγ. Similarly, SCFA-induced reduction of hepatic steatosis was absent in mice lacking hepatic PPARγ. These results demonstrate that adipose and hepatic PPARγ are critical mediators of the beneficial effects of SCFA on the metabolic syndrome, with clearly distinct and complementary roles. Our findings indicate that SCFAs may be used therapeutically as cheap and selective PPARγ modulators.
  
Recall that from earlier posts, I am already on the look out for selective PPARγ modulators (like Tangeretin)



Increased intake of dietary carbohydrate that is fermented in the colon by the microbiota has been reported to decrease body weight, although the mechanism remains unclear. Here we use in vivo11C-acetate and PET-CT scanning to show that colonic acetate crosses the blood–brain barrier and is taken up by the brain. Intraperitoneal acetate results in appetite suppression and hypothalamic neuronal activation patterning. We also show that acetate administration is associated with activation of acetyl-CoA carboxylase and changes in the expression profiles of regulatory neuropeptides that favour appetite suppression.






Tregs and Allergies

Fortunately some researchers have indeed looked at Tregs and allergies, but they did not seem to know about SCFAs.

T regulatory cells: an overview and intervention techniques to modulate allergy outcome.


Abstract

Dysregulated immune response results in inflammatory symptoms in the respiratory mucosa leading to asthma and allergy in susceptible individuals. The T helper type 2 (Th2) subsets are primarily involved in this disease process. Nevertheless, there is growing evidence in support of T cells with regulatory potential that operates in non-allergic individuals. These regulatory T cells occur naturally are called natural T regulatory cells (nTregs) and express the transcription factor Foxp3. They are selected in the thymus and move to the periphery. The CD4 Th cells in the periphery can be induced to become regulatory T cells and hence called induced or adaptive T regulatory cells. These cells can make IL-10 or TGF-b or both, by which they attain most of their suppressive activity. This review gives an overview of the regulatory T cells, their role in allergic diseases and explores possible interventionist approaches to manipulate Tregs for achieving therapeutic goals.


Regulation of Inflammation by Short Chain Fatty Acids

Here is a very good paper from Brazil, for those who need more convincing.



Short chain fatty acids (SCFAs), which are the major metabolic products of anaerobic bacteria fermentation, have been suggested to be the link between microbiota and host tissues. The concentration of these fatty acids in the GI tract and blood may predispose to or prevents pathological conditions such as IBD, cancer and diabetes. Modifications in the concentrations or the ability of host
tissues to use SCFAs have been described in these conditions.


















Mode of action of SCFAs

If anyone is interested in how SCFAs work their tricks, this is what they say in Brazil:

The main mechanism described for these effects is the attenuation of HDAC activity. Among the SCFAs, butyrate is the most potent, whereas acetate is the least potent inhibitor of HDAC.
This enzyme, together with the histone acetyltransferases (HAT), controls the degree of protein acetylation. By inhibiting the HDAC activity, SCFAs increase the acetylation of histone and non histone proteins including NFκB, MyoD, p53 and N-FAT [57] and, consequently, modulate gene
expression.

The production of prostaglandin E2 (PGE2) is also modified by SCFAs. These fatty acids stimulated the in vitro production of this eicosanoid by human monocytes [58]. In accordance with this result, induction of PGE2 production was observed three hours after intraplantar injection of SCFAs and LPS in rat paws [34]. PGE2 has been considered an anti-inflammatory prostanoid due to its ability to attenuate the production of IL-1β and TNF-α by macrophages and Th1 differentiation. However, there is now evidence in favor of a pro-inflammatory action of this molecule [59]. PGE2, through activation of its receptor EP4, facilitates Th1 differentiation and Th17 expansion, two subsets of T helper involved in immune inflammation [59,60]. Considering these findings, SCFAs may also affect T cell differentiation.

In addition to the classical eicosanoids, such as PGE2, other lipid mediators are also generated from polyunsaturated fatty acids including lipoxins, resolvins, protectins and maresins [61]. Despite their relevance to the resolution of the inflammatory process [61], at the moment, no study has been conducted in order to investigate the effect of SCFAs on the production of these lipid mediators.

Anti-inflammatory actions of SCFAs have been also observed in neutrophils. Acetate, propionate and butyrate at 30 mM reduce TNF-α production by LPS-stimulated human neutrophils [62].

Propionate and butyrate inhibit the expression of pro-inflammatory mediators (TNF-α, CINC-2αβ and NO) in rat neutrophils, an effect that seems to involve attenuation of NF-κB activation [21].

Microglial cells are resident immune cells of the central nervous system (CNS). Activation of these cells leads to production of several inflammatory mediators (e.g., cytokines and NO) that participate in the defense reaction of the CNS against insults including microorganisms and damaged cells [63].
Chronic or excessive activation of these cells has detrimental effects on the CNS and seems to be involved in the initiation and progression of neurodegenerative diseases including Alzheimer and Parkinson’s disease. In spite of some controversy about the effect of SCFAs on microglial production of inflammatory mediators [52,53], most of the studies indicate that these fatty acids attenuate microglial activation, an effect that seems to involve HDAC inhibition [53,54]. These observations and the data obtained in vivo [64] support the proposition that SCFAs and other inhibitors of HDAC may be useful in preventing inflammation in the CNS. Indeed, Kim et al. [64] have shown that butyrate, valproic acid and trichostatin A (all inhibitors of HDAC activity) present antineuroinflammatory and neuroprotective effects in the ischemic brain of rats.

Effectors Mechanisms of Phagocytes

Once in the inflammatory site, neutrophils and macrophages internalize, kill and digest bacteria and fungi through mechanisms including production of reactive oxygen species (ROS) and release of granule enzymes. SCFAs affect the production of ROS and the phagocytic capacity of phagocytes.

This effect is important in the course of anaerobic bacteria infection. Both inhibition [65,66,68] and stimulation [4,68] of neutrophil phagocytosis by SCFAs have been described. In macrophages, butyrate reduce the phagocytic activity, an effect that probably arises from its inhibitory action on cell differentiation and maturation [69].

The effects of SCFAs on ROS production by neutrophils remain controversial. Some groups have found that SCFAs induce ROS production [4,70,71], whereas others have shown inhibition [65,67,72–74].

The discrepancy in the results obtained may be explained by differences in the protocols used such as the concentrations of SCFAs, measurement of ROS by using different methodologies (e.g., lucigenin-amplified chemiluminescence or reduction of cytochrome c), stimuli (e.g., PMA or fMLP), solution pH, source and state of neutrophil activation (e.g., neutrophils isolated from human blood or elicited rat neutrophils).

3.3. Lymphocyte Activation and Response

Lymphocytes are involved in the adaptive immune response. These cells display membrane receptors that recognize a broad range of non-self antigens and allow them to generate specific responses to  liminate invading pathogens and infected or tumoral cells. SCFAs modify lymphocytes function as follows:

T-cell proliferation: butyrate inhibits lymphocyte proliferation in response to several stimuli including concanavalin-A and immobilized anti-CD3 monoclonal antibody [41,75].
Production of cytokines: incubation of lymphocytes with butyrate reduces the production of interleukin-2; this cytokine stimulates growth, differentiation and survival of antigen-selected
T-lymphocytes, and interferon-γ (IFN-γ) after stimulation with concanavalin-A or anti-CD3 and anti-CD8 [76,77]. This latter cytokine is particularly important in response to viral infection, tumor cells and in auto-immune conditions. On the other hand, butyrate presents an opposite effect on the production of IL-10 by lymphocytes [75].
Production of regulatory T (Treg) cells: this subpopulation of T cells actively suppresses immune function and is considered an attractive target for the treatment of immunological and inflammatory pathologies. HDAC inhibitors enhance the production and suppressive function of regulatory T cells [77]. Considering that SCFAs, as previously described, also suppress the activity of HDAC, we hypothesize that these fatty acids may also exert their effects on inflammation and immune responses through regulation of this subset of T cells.



Conclusion

Within reasonable limits, short chain fatty acids (SCFAs) are good for you.

Particularly if you have an inflammatory condition or need to lose some weight.

You already produce them and some people would benefit from some more.



P.S. for the Diehards


Proprionic Acid (PPA) in Rats

There is also research indicating that injecting large amounts of one particular SCFA, Propionic acid into the brains of rats does them no good at all.  In fact the opposite of all the good things notes by the Brazilians and others.

Having read an awful lot of autism research, I have to point out that sometimes a little of what does you harm, can actually do you some good.  For example the Valproate mouse model of autism is based on feeding Valproic Acid to the female mouse to make her pup be born with autistic features.  Yet the same drug Valproic Acid, in lower doses, is an effective treatment for autism with seizures in humans.
In pregnant humans the risk of Valproate is slightly different.  According to Harvard:-

Valproate. It’s best to avoid taking valproate (Depakote) during pregnancy, especially during the first trimester, as this drug increases the risk of neural tube defects such as spina bifida. Risk increases with dose. In absolute terms, researchers estimate that one to six babies out of every 100 exposed to valproate in the first trimester of fetal development are born with some type of neural tube defect.

  


Abstract

Clinical observations suggest that certain gut and dietary factors may transiently worsen symptoms in autism spectrum disorders (ASD), epilepsy and some inheritable metabolic disorders. Propionic acid (PPA) is a short chain fatty acid and an important intermediate of cellular metabolism. PPA is also a by-product of a subpopulation of human gut enterobacteria and is a common food preservative. We examined the behavioural, electrophysiological, neuropathological, and biochemical effects of treatment with PPA and related compounds in adult rats.

Intraventricular infusions of PPA produced reversible repetitive dystonic behaviours, hyperactivity, turning behaviour, retropulsion, caudate spiking,
and the progressive development of limbic kindled seizures, suggesting that this compound has central effects. Biochemical analyses of brain homogenates from PPAtreated rats showed an increase in oxidative stress markers (e.g., lipid peroxidation and protein carbonylation) and glutathione S-transferase activity coupled with a decrease in glutathione and glutathione peroxidase activity. Neurohistological examinations of hippocampus and adjacent white matter (external capsule) of PPA treated rats revealed increased reactive astrogliosis (GFAP immunoreactivity) and activated microglia (CD68 immunoreactivity) suggestive of a neuroinflammatory process. This was coupled with a lack of cytotoxicity (cell counts, cleaved caspase 3_ immunoreactivity), and an increase in phosphorylated CREB immunoreactivity. We propose that some types of autism may be partial forms of genetically inherited or acquired disorders involving altered PPA metabolism. Thus, intraventricular administration of PPA in rats may provide a means to model some aspects of human ASD in rats.





The short chain fatty acids (SCFAs) acetate (C2), propionate (C3) and butyrate (C4) are the main metabolic products of anaerobic bacterial fermentation in the intestine. In addition to their important role as fuel for intestinal epithelial cells, SCFAs modulate different processes in the gastrointestinal (GI) tract such as electrolyte and water absorption. These fatty acids have been recognized as potential mediators of the effects of the gut microbiota on intestinal immune function and gut-brain axis interaction [4]. Recently it was reported that the three types of SCFAs (acetate, propionate, and butyrate) reduce the production of proinflammatory factors, including TNF-α, IL-1β, IL-6, and NO. Additionally, SCFAs enhance the production of the anti-inflammatory cytokine IL-10 in low concentrations (1–1,200 μmol/L) [5].
In spite of the protective effects of SCFAs, propionic acid (PPA) neurotoxicity was recently demonstrated via intraventricular direct infusion into rat brains [6], passage from the gut to the brain in the case of acute PPA orally administered to rat pups [7] or Chronic administration on postnatal days 5–28 [8] and, most recently, subcutaneous injection once a day (500 mg/kg) in pregnant rats on gestation days G12–16 [9].



I am very much minded to go with Wendy, the Brazilians and the Egyptians (who found Trep low in autism). 

I think the Saudis, with their PPA-neurointoxicated rats, are barking up the wrong tree.

In fact, the Saudis say that PPA is low in humans with autism.

Low SCFAs, like PPA, help produce low Trep, which helps produces high IL-6 and low IL-10, just as I expect to find in autism.






Sunday 12 April 2015

Olive Leaves as another Calcium Channel Blocker for Autism?

This is a brief post to pass on some information from Natasa, who reads this blog and has a big interest in the role of calcium channels in autism.

The readers of this blog who are doctors express a preference for drugs over supplements, but for many others the reverse is true.  One problem for the others is how to access prescription only drugs.

Natasa has pointed out the Olea europaea Leaf Extract (OLE) that is used by some parents in their “antifungal/antiviral autism protocols”, is actually an L-type calcium channel blocker.

In Southern Europe Olea europaea leafs are known as a folk remedy for hypertension (high blood pressure).



ETHNOPHARMACOLOGICAL RELEVANCE:
In Southern Europe Olea europaea leafs are known as a folk remedy for hypertension. Cardiovascular diseases are still the leading causes of morbidity and mortality in industrialized countries with hypertension being one of the main risk factors.
AIM OF THE STUDY:
We investigated effects of a commercial Olea europaea leaf extract (OLE) on isolated hearts and cultured cardiomyocytes.
MATERIALS AND METHODS:
Isolated rabbit hearts were perfused according to the Langendorff technique and connected to a 256-channel epicardial mapping system. Voltage clamp experiments were performed in cultured neonatal rat cardiomyocytes using a perforated-patch technique.
RESULTS:
OLE caused a concentration-depended decrease in systolic left ventricular pressure and heart rate as well as an increase in relative coronary flow and a slight, but not significant prolongation of PQ-time. There were no significant changes between the groups in the activation-recovery interval and its dispersion, total activation time, peak-to-peak amplitude, percentage of identical breakthrough-points and similar vectors of local activation. Voltage clamp experiments in cultured neonatal rat cardiomyocytes showed a significant decrease in maximum I(Ca,L) by OLE which was reversible upon wash-out.
CONCLUSIONS:
OLE suppresses the L-type calcium channel directly and reversibly. Our findings might help to understand the traditional use of OLE in the treatment of cardiovascular disease.


Verapamil is part of my suggested Polypill for classic autism.  Several readers of this blog are successfully using Verapamil, this inexpensive L-type calcium channel blocker. 

Many other readers are unable to access Verapamil.

As many other parents are already using OLE as a treatment for autism, it would seem plausible that it is the calcium channel blocking effects that make it effective.  You can search on Google to see the dosage they use.

Interestingly a randomized controlled double-blind crossover trial in New Zealand found that olive leaf extract capsules significantly improved insulin sensitivity and pancreatic β-cell responsiveness in middle-aged overweight men.



OLE is known to be an antioxidant, which is another useful property.  As we have seen before, antioxidants do improve insulin sensitivity.  We also saw how Verapamil protected pancreatic β-cells from damage that leads to type 2 diabetes.  This is why older people on Verapamil, for high blood pressure, tend not to develop type 2 diabetes.

It does look like OLE could have some of the autism benefits of Verapamil, as well as other properties.


Verapamil is standardized and extremely cheap, so I will be sticking with that. Olé!




Thursday 2 April 2015

Treating autism with a diuretic: a long procedure


Several readers have asked me about the current status of Bumetanide as a treatment for autism. The process in Europe is controlled by EMA (European Medicines Agency), the equivalent of the FDA in the United States.  

Bumetanide affects the function of the GABAreceptor.  If you click on the site index, you can refer to Bumetanide and read the research and my own son's very positive experience of using this drug since December 2012.     

Most readers in the UK and USA have difficulty getting their doctor to prescribe bumetanide, since autism is currently an off-label use.  Many readers elsewhere have been able to access this drug and are seeing its positive impact.

Dr Ben-Ari, whose research has been outlined in those earlier posts, has kindly provided this update:-




Treating autism with a diuretic: a long procedure 


We have started some time ago testing the possibility of using a diuretic to treat Autism Spectrum Disorders (ASD) relying on our promising experimental observations made in rodent. Indeed we discovered in 2 animal models of ASD (the in utero Valproate model and the Fragile X one) that cortical neurons have elevated intracellular chloride that shifts a major inhibitory mechanism to excitatory leading to perturbations of the behaviorally relevant brain oscillations (Tyzio et al Science 2014 and Eftekhari et al Science 2014). Correcting these elevated levels of chloride with a diuretic that reduces intracellular chloride ameliorated the electrical and behavioral signatures of ASD in these rodents. Relying on these and indirect observations, we had conducted with Dr Lemonnier a pilot trial followed by a phase 2 randomized double blind placebo control study on 54 children aged 3 to 11yrs old. We obtained promising results (Lemonnier et al Trans Psychiat 2012). Thus is followed now by a larger EMA approved trial with 80 children 2 to 18 yrs old that will be terminated next fall.

The procedure is long and complex as this requires many clinical controls and large sums of investments. This is however mandatory as  one cannot propose a treatment unless this has been tested and approved by the clinical authorities. Indeed, there have been many false hopes in the treatment of ASD, and one cannot give false promises without having all the elements needed that confirm that the treatment does improve the situation and has limited or no side effects.

We cannot therefore make any suggestion and promise as to the success or failure of the approach in spite of our compelling animal data and preliminary clinical observations. We follow the requirements and when and if our trials are successful , we shall pursue until we obtain an authorization to market this drug.

Sincerely


Information is available at






Tuesday 31 March 2015

Reassessing Cognitive Impairment in Autism – Improving the Prognosis




When Monty, now aged 11 with ASD, was diagnosed aged three and a half we were told that he had autism and “this may be indicative of the presence of an associated learning disability, but it is impossible at this stage to give a prognosis as to his future difficulties” and also “he is not yet able to take part in formal assessments of his cognitive ability. When his skills and ability to share interests with adults and to follow direction/instruction develop, it will be possible to formally assess his cognitive skills using standard measures.”

Off the record, we were also told that he might develop epilepsy.

We never measured his IQ and he has never had a seizure.

With hindsight, it is interesting what they said about it being pointless to try and measure his IQ.  Apparently it is not uncommon to do just that.


Improving Cognitive Function

This post is about cognitive improvement, so do not be put off by the introduction to MR/ID.  Several regular readers who are using some of the suggested drugs discussed in this blog are now also commenting on the resulting cognitive improvement, so it really is not just a case of N=1.

Nobody here is measuring the change in their child’s IQ, so these remain anecdotes.


To start on a happy note

Monty, aged 11 and diagnosed with classic autism, has been learning the piano for three years.  At the start he was not very cooperative with his teacher and after a few months the lessons stopped.  

27 months ago he started on bumetanide, the first part of his autism Polypill.  After years of ABA, slow but solid development appeared to have reached a plateau; but then he began to accelerate.  We restarted piano lessons again, with a new teacher.  Having added Atorvastatin, from the very next day he began to practice daily, playing without his teacher.  He has had two 40 minutes lessons most weeks since.  Two years later this is the result:-



 Click the image to play, turn up the volume (video may not work on Apples)

  
  
So there is no doubt that Monty got smarter.  When I heard him playing this piece, I thought it was the piano teacher, but she was recording Monty on her phone.

Big brother also did not believe little brother was playing this, until he saw the full video (with moving fingers).

Reading, writing, and numeracy have all improved and are now at a similar level to those of many of his NT classmates (who are 2 to 3 years younger than him).  Rather unexpectedly, he was recently the only one in class who understood how to multiply fractions; this was never taught at home.   

Prior to starting the Polypill drugs, I had spent three years, on and off, trying to teach Monty prepositions, without much progress.  This is almost always a difficult area for those with classic autism.  In the end he figured it all out by himself, with a little help from Bumetanide.

Recently yet another cognitive step forward seems to have have occurred, which appears to be the result of PAK 1 inhibiting propolis and/or the tangeretin flavonoid.  Monty's assistant in school was today proudly showing me his latest school test result, "73% and it was all his own work".  She thinks it is the tangeretin.

In earlier years school was for “socialization”, not learning.  This is fine as long as the learning takes place at home, otherwise inclusion means no education.



Cognitive Function, IQ, MR/ID

I prefer to talk about cognitive function, and its improvement or enhancement.  Drugs that achieve this are usually called Nootropic.

I think that many people remain skeptical about Nootropics.

Psychiatrists, Pediatricians and Psychologists prefer to think about IQ, MR/ID.

People affected do not like the old term of Mental Retardation (MR) and so quite recently, in English speaking countries, it was replaced by the term Intellectual Disability (ID).  The World Health Organization still use the old term, as does almost everybody else.

Somebody is diagnosed with MR or ID if their IQ is below 70.  In a typical group of 100 people, two people (2.2%) would be expected to fall into that category.  The average IQ (mean, median and mode) is 100.




In theory as you progress through childhood and into adulthood your IQ is expected to stay the same.  So the tests used adjust for your age.  There are special non-verbal tests.

If you acquire new skills at a lower rate than typical, your IQ would appear to fall over time.  This does not mean that you have lost skills just that you are acquiring new skills at a slower rate than your peers.  This explains why parents of kids with ASD, who do have their IQ tested, often find their score goes down as they get older.


Measuring IQ in Autism

I think it is generally a bad idea to measure IQ in people with autism.

There is anecdotal evidence to show that the results are often not valid, because the test is based on the assumption of compliance and that the child is actually doing his/her best.  Not surprisingly, the experts have found that children undergoing an ABA program improve their measured IQ by 10s.  After a few months of ABA the previously unfocused child has been trained to sit down, sit still, pay attention and work.  Of course they then get a higher score, but are they now more intelligent?

One reason put forward for not measuring IQ, is that while people will go a long way to help a child with autism to learn, once you add a diagnosis of MR/ID, some people will try much less hard.

Nonetheless people do measure IQ in autism and it is worth a quick look at what is known.

Some people are saying that 50% of people with autism have MR/ID.  I always found that odd, and what exactly do they mean by autism?

Using the previous US DSM definitions, Asperger’s was a part of the autistic spectrum but had the precondition that there was no MR/ID and no language delay.  Then you had the middle group with the odd name of PDD-NOS    (Pervasive Developmental Disorder Not Otherwise Specified).  This groups the people with more issues than Asperger’s, but without many of the problems experienced by those diagnosed with Autism.

So in the old US system there were 3 main categories, plus 2 minor ones:-

1.     Asperger’s
2.     PDD-NOS
3.     Autism
4.     Retts Syndrome
5.     Childhood Disintegrative Disorder (CDD)

Very few people have Retts or CDD.

The Autistic Spectrum was, in effect, also called PDD (Pervasive Developmental Disorder) just to confuse people a little more.  PDD = ASD = the above five conditions.

The latest version DSM5 went several steps backwards.  Everybody affected in the US is now just ASD, all five categories were merged.  

Hopefully nobody else in the world will pay any attention.

Unfortunately being Psychiatrists, they again have to muddy the water and all the future data/statistics.  A portion of people formerly diagnosed with PDD-NOS, will now get diagnosed with SCD (Social Communication Disorder) which is set outside the new definition of ASD.

“Congratulations you are off the Spectrum” 


I really do wonder about the IQ of these Psychiatrists.


Reliable Data on ASD

I do like to have some reliable data.  The quality of data in the field of autism is usually very poor and incompatible (i.e. rubbish).  Most data, like that from the CDC in the US, is unreliable.  It seems that richer “Ethnic European” parents push to get an autism diagnosis much harder than poorer “Hispanic” and “African American” parents.  Perhaps hard to believe as an outsider, but in the US poverty equals low diagnosis of autism and wealth equals high diagnosis.  Incidence does not equal diagnosis.  CDC data is just who got diagnosed; in the US many poorer people do not get diagnosed.  If you live in a country with free socialized healthcare, as in Europe, this will look strange.

I have chosen a highly regarded, and very highly cited, Canadian source for my data.

Éric Fombonne  is a French psychiatrist and epidemiologist based at McGill University in Montreal.  He co-authored a pair of studies in 2001 and 2005 with Suniti Chakrabarti, that examined the entire preschool and early school population of one large area of the United Kingdom (falling under the South Staffordshire Health Authority).

There is a stable population of indigenous British people with a small (1.4%), mostly Asian, immigrant population. The total population living in the area was 320 000 people.



The studies are:-







All children from 2.5 to 6.5 years old were screened, a total of 15,500 children in total 97 children (79.4% male)  were found to have a PDD (i.e. be somewhere on the autistic spectrum)

Of the 97 children, 29 (29.9%) had no functional use of language defined as the daily spontaneous use of 3-word phrases. The proportion of children without functional language was however strongly associated with diagnostic subtype (AD, 69.2%; Asperger syndrome, 0%; PDD-NOS, 16.1%).

Of the 97 children, 37 children underwent Merrill-Palmer testing and 56, Wechsler Preschool and Primary Scale of Intelligence testing. Four children could not be tested for practical reasons. Overall, 24 (25.8%) of 93 children had some degree of mental retardation. The 2 children with childhood disintegrative disorder and Retts syndrome scored in the moderate range of mental retardation.








Side-note about shoddy research

To show those of you still unconvinced that published, and moderately highly cited, autism research can be rubbish, the authoritative sounding paper written by a Professor of Psychology below also reviewed the above research data.


The author commented:-

Recent epidemiological surveys have shown that the prevalence rates of MR in children with autism is between 40% and 55% (e.g., Chakrabarti & Fombonne, 2001), much lower than the typical rates cited in the literature.”

The Chakrabarti & Fombonne 2001 paper clearly shows 69% of people with the narrow diagnosis of “autism” had MR whereas 25.8% of those with the broader diagnosis of ASD/PDD.

More than 100 other papers now cite the author’s incorrect readings of the original research.

I do not know what IQ you need to have to be a Professor of Psychology, but it clearly needs to be increased.



Back to the Fombonne studies

Four years later they repeated the same study on the next cohort of English school children:-

The rate of mental retardation in the autistic disorder group was 66.7%, compared to 12.0% in the group with pervasive developmental disorder not otherwise specified and 0.0% in the Asperger's disorder group


So I will take the average of the two studies

            Autism                       68% with MR/ID
            PD-NOS                     10% with MR/ID
            Asperger’s                    0% with MR/ID


What surprised me was the breakdown of the children by PDD.  Most kids (>50%) were PD-NOS, I did not expect that.

  Autism                        31%
            PD-NOS                     52%
            Asperger’s                  16%
            CDD/Retts                    1%

So the percentage all PDD (i.e. all ASD) with MR was 27%



Combining this as a graphic:-  






  

So now when people tell me that 50% of kids with autism have MR/ID, at least I know the likely reality.  It is either more, or less, depending on what you mean by “autism”; but is not 50%.



Conclusion

Most people think you cannot change your IQ.

The reality is that testing a young child with severer ASD is highly likely to underestimate their IQ, since the test assumes that the child will comply with the tester.  Most young children with autism do not comply with their parents, let alone an IQ tester.

ABA will improve compliance and hence improve an IQ test result.

Long term ABA use will, in many cases, gradually improve the child’s ability to learn and hence boost cognitive function and by implication an IQ test result.  You will find references to people saying ABA raised their kids IQ score by one or two dozen.

Correcting the biological dysfunctions underlying autism undermines the whole shaky DSM system.

PDD-NOS is, in effect, milder classic autism without the stereotypy .
Take some N-acetyl cysteine pills, you lower oxidative stress and you can stop the stereotypy.  So then your “expert” diagnosis would change from classic autism to PDD-NOS?

Take a few more pills and instead being in the 68%, with an IQ of less than 70, you can move up to 85 and, who knows, maybe much higher.

But it has to be said that the concept of IQ is something many people think they understand.

If one day, I were to make a clinical trial of my autism Polypill, I would definitely include a before and after measurement of IQ, alongside all the usual behavioral measures that most people would not understand.

And then …

“Wonder drug rescues people with autism from mental retardation”

In the meantime, we can continue correcting the remaining biological dysfunctions underlying autism and thus improving cognitive function.






Note the rocket, for those with classic autism doing just this and changing their prognosis.