UA-45667900-1
Showing posts with label NAC. Show all posts
Showing posts with label NAC. Show all posts

Friday 11 March 2016

Treating Adults with Autism?





 
 




Almost the entire focus of treating autism is targeted at young children; only rarely do you hear about clinical trials involving adults, yet we are often reminded that autism is a lifelong condition.

For those of you that read the proposed guidelines to drug companies developing autism therapies, this issue raised its head again.  Will therapies effective in children be effective in adults (and vice versa)?

There are many issues here.  On the one hand there is great caution about giving drugs to very young children, but there is the realization that many therapies may only be effective if given at an extremely young age.

I only started treating the biological dysfunctions in Monty, now aged 12, when he was 9 years old.  By good fortune the first therapy (bumetanide) I tried was highly effective, otherwise this blog would not exist.

Had that Bumetanide clinical trial been published 5 years earlier, would I have given my then 4 year old son that same drug?  Probably not.

With what I now know, I would be happy to give Bumetanide as soon after birth that autism was even suspected.  (To the trained eye, this is but a few months old)


The effect of no treatment

For three years I have been developing a personalized autism treatment, Monty’s Polypill, and I think it works well, but a few weeks ago we decided to see what happens with no treatment at all.

This did provide some useful insights into treating young adults, as opposed to young children.

The first thing is that all the new skills that have been acquired, at close to neurotypical speed, in the last three years, did not just fade away. 

The old obvious repetitive behaviors/stimming/stereotypy did not return, but more subtle new ones did.  (no NAC)

He could still play his piano nicely with his teacher, but his interest in playing out of lessons faded away as did his skill level out of lessons.

He showed an occasional aversion to doing anything new, for example when his assistant came in the afternoon, I told him to go outside and meet her.  He could happily open the front door (his normal routine) but was not able to walk though it and meet her by the gate.  (no statin)

When I offered to go with him, he had a brief tantrum. 

He started asking permission to do things he knew how to do, which some people saw as a positive.  When lying in bed at 9pm he called out “Mum can I read a book”, rather than just picking one from the shelf by his bed and when at a small birthday party he had to bend down to light the candles, he turned round and said “can I squat?”  Most people thought that was good use of vocabulary, I was thinking “just do it”.  (statin effect)

I received comments like “how patient he is”, or at school  words like “peace” and “peaceful”.  I was thinking how passive he was. (no bumetanide/low dose clonazepam)

While there was no glaring loss of cognitive function and spelling tests and maths test at school were not showing any deficit, I noticed a loss of ability to develop new skills. 

We use an excellent online program called Math Whizz and one thing we were learning was to how to use the calendar.

Typical questions would be:-

“What date is the second Friday in May?”
“What date if the first Monday in December?”
“What day (of the week) is the last day in June?”

You first have to click on “May” to get the calendar to turn to the correct month and then you can figure out the answer.

To my surprise, while still on the Polypill, Monty was getting pretty good at this exercise, on his first attempt.

However, a few days later, when we tried with no Polypill, he was struggling and as the days passed he got worse and worse.  (chloride levels gradually rising?)

There was even a return of the sensory overload that causes many problems for some people with autism and also Asperger’s.  Even the sound of a crow became disturbing.  Both Acetazolamide and Bumetanide are used to treat Hypokalemic Periodic Paralysis, which is a more severe form of Hypokalemic Sensory Overload and at least some types of Autistic Sensory Overload are a subset of this.

After two weeks of Bumetanide and Potassium the sound over-sensitivity has gone again.  It did not go away immediately.


Pleiotropic effect of Verapamil

While I initially identified the calcium channel blocker, Verapamil, as an effective inhibitor of aggression and SIB triggered by allergy/mast cell degranulation, I was once asked if I thought Verapamil might have pleiotropic effects in Monty.  Having stopped using Verapamil and then restarted it, all outside of the problematic allergy season, I have all the proof I need in my n=1 case.  Life is better with a little Verapamil; his calcium channel dysfunction goes beyond those in mast cells.

Verapamil was the last element of the Polypill that I re-started; I was rather hoping it would show no effect outside the allergy season.  Only after adding it back did things really return to what has become our "normal".

There is after all a vast amount of evidence linking calcium ion channel dysfunction and autism.



My Verdict

I think many people would be very happy to have a passive child, who can sit for two hours in restaurant.

Most people do not notice the fading of good behavior, because their overriding concern is the lack of any “bad” behavior.  So a bad behavior is followed by a “is this better?”, rather than a “Wow, do you know Monty did today …”.

I prefer a child who can learn, even if that means he may get fed up from time to time, and show it.

I was pleased to come home earlier this week and find Monty sitting alone playing his piano beautifully (no prompting, no reinforcement needed), with his music book laid out in front of him, playing one melody, turning the page and playing the next one, while his big brother had gone upstairs to play his computer games, because little brother does not need him. 

  

Intervention in Adults

Other than halting self injurious behavior (SIB), I am far from convinced that most people would even notice the difference if you took an adult with classic autism and started to treat him.

At that age, passive and patient is what most caregivers want.

So I see little prospect that “corrective biological therapy” will ever be initiated in many adults with more serious autism;  they will continue to be “tranquilized”.

Many adults with Asperger’s and high IQ do their own research and self-treat; some even read this blog. For them, even a small biological "improvement" can have a welcome effect on well-being. Good for them.



Intervention in Young Children

The best way forward is to intervene immediately after diagnosis.  In the US/Canada that might be two years old, but more like four years old in Europe.


If I was a Roche or Novartis, this would be my target:- non-verbal, non toilet-trained toddlers who make no eye contact, possibly cry a lot and tend to be kept at home.





Tuesday 29 September 2015

Is Reductive Stress a common feature of Atypical Autism?







Lay summary:


·        Oxidative injury can be caused by both oxidative stress and the opposite, reductive stress. 

·        Both extremes of redox balance are known to cause cardiac injury

·        Both extremes of redox balance disrupt mitochondria

·        It appears that either extreme of redox balance may occur in autism.


Reductive stress is the opposite of oxidative stress and I am calling it “Atypical Autism” because all the research shows that the great majority of autism and indeed schizophrenia is associated with oxidative stress.


NAC and stereotypy/stimming

Most young children with classic autism exhibit stereotypy/stimming; this kind of obsessive, repetitive behavior can really get in the way of daily life.  You can use the principles of ABA to limit or redirect this behavior, but it turns out that there is a biological cause for it.

Taking NAC (N-acetylcysteine) increases the body’s production of GSH, its main antioxidant.  Once the intake in NAC is high enough to shift the balance between oxidants and antioxidants the stereotypy/stimming stops all by itself.  This does not mean that the child will still not enjoy repetition.

In some children it takes quite a lot of NAC before any effect is visible, one parent mentioned no effect until 1,800 mg a day.  In other people, the effect starts with the first 600mg and just keeps growing before plateauing around 3,000 mg a day.

This variation makes sense; it all depends just how out of balance the oxidants/antioxidants were at the outset.

If you have access to lab testing you would look at the ratio between GSH and GSSG. This would give you a good indication of your Redox balance.


NAC and Nrf-2 Activators making things worse

In a small number of cases NAC and Sulforaphane/broccoli (a Nrf-2 activator) actually makes things worse.  This does not mean more stereotypy/stimming; I think it quite likely that in those people, stereotypy/stimming are not a feature of their "autism",

Worsening autism can be an increase in anxiety.

Anxiety is often a feature of Asperger’s.

Anxiety is not an issue at all in many cases of classic autism.

NAC is itself an anti-oxidant as well as increasing GSH.  

Sulforaphane/broccoli activates Nrf-2 which in turn affects the genes that control the antioxidant response.  If this make things worse, it seems likely that there was no oxidative stress; either redox was in balance or they are already at the other extreme, reductive stress.


Some Science

The summary below is from the following paper




“Whenever a cell’s internal environment is perturbed by infections, disease, toxins or nutritional imbalance, mitochondria diverts electron flow away from itself, forming reactive oxygen species (ROS) and reactive nitrogen species (RNS), thus lowering oxygen consumption.

This “oxidative shielding” acts as a defense mechanism for either decreasing cellular uptake of toxic pathogens or chemicals from the environment, or to kill the cell by apoptosis and thus avoid the spreading to neighboring cells.

Therefore, ROS formation is a physiological response to stress.

The term “oxidative stress” has been used to define a state in which ROS and RNS reach excessive levels, either by excess production or insufficient removal. Being highly reactive molecules, the pathological consequence of ROS and RNS excess is damage to proteins, lipids and DNA. Consistent with the primary role of ROS and RNS formation, this oxidative stress damage may lead to physiological dysfunction, cell death, pathologies such as diabetes and cancer, and aging of the organism.”


But reductive stress also leads to ROS formation


Reductive Stress and Oxidants

Reductive stress can be just as bad as oxidative stress and, very surprisingly, can have exactly the same negative effect on mitochondria (see below)




Abstract

To investigate the effects of the predominant nonprotein thiol, glutathione (GSH), on redox homeostasis, we employed complementary pharmacological and genetic strategies to determine the consequences of both loss- and gain-of-function GSH content in vitro. We monitored the redox events in the cytosol and mitochondria using reduction-oxidation sensitive green fluorescent protein (roGFP) probes and the level of reduced/oxidized thioredoxins (Trxs). Either H2O2 or the Trx reductase inhibitor 1-chloro-2,4-dinitrobenzene (DNCB), in embryonic rat heart (H9c2) cells, evoked 8 or 50 mV more oxidizing glutathione redox potential, Ehc (GSSG/2GSH), respectively. In contrast, N-acetyl-l-cysteine (NAC) treatment in H9c2 cells, or overexpression of either the glutamate cysteine ligase (GCL) catalytic subunit (GCLC) or GCL modifier subunit (GCLM) in human embryonic kidney 293 T (HEK293T) cells, led to 3- to 4-fold increase of GSH and caused 7 or 12 mV more reducing Ehc, respectively. This condition paradoxically increased the level of mitochondrial oxidation, as demonstrated by redox shifts in mitochondrial roGFP and Trx2. Lastly, either NAC treatment (EC50 4 mM) or either GCLC or GCLM overexpression exhibited increased cytotoxicity and the susceptibility to the more reducing milieu was achieved at decreased levels of ROS. Taken together, our findings reveal a novel mechanism by which GSH-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity.—Zhang, H., Limphong, P., Pieper, J., Liu, Q., Rodesch, C. K., Christians, E., Benjamin, I. J. Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity.


Reductive Stress in Disease





Both extremes of redox balance are known to cause cardiac injury, with mounting evidence revealing that the injury induced by both oxidative and reductive stress is oxidative in nature. During reductive stress, when electron acceptors are expected to be mostly reduced, some redox proteins can donate electrons to O2 instead, which increases reactive oxygen species (ROS) production.

However, the high level of reducing equivalents also concomitantly enhances ROS scavenging systems involving redox couples such as NADP/NADPH and GSH/GSSG. Here we have further explored, using isolated intact and permeabilized cardiac mitochondria and purified NADP-dependent enzymes, how reductive stress paradoxically increases net mitochondrial ROS production despite the concomitant enhancement of ROS scavenging systems.

We show that one of the latter components, thioredoxin reductase 2, is converted into a potent NADPH oxidase during reductive stress, due to limited availability of its natural electron acceptor, oxidized thioredoxin. This finding may explain in part how ROS production during reductive stress overwhelms ROS scavenging capability, generating the net mitochondrial ROS spillover causing oxidative injury.



Reductive stress: A new concept in Alzheimer’s disease



Reactive oxygen species play a physiological role in cell signaling and also a pathological role in diseases, when antioxidant defenses are overwhelmed causing oxidative stress. However, in this review we will focus on reductive stress that may be defined as a pathophysiological situation in which the cell becomes more reduced than in the normal, resting state. This may occur in hypoxia and also in several diseases in which a small but persistent generation of oxidants results in a hormetic overexpression of antioxidant enzymes that leads to a reduction in cell compartments. This is the case of Alzheimer’s disease. Individuals at high risk of Alzheimer’s (because they carry the ApoE4 allele) suffer reductive stress long before the onset of the disease and even before the occurrence of mild cognitive impairment. Reductive stress can also be found in animal models of Alzheimer’s disease (APP/PS1 transgenic mice), when their redox state is determined at a young age, i.e. before the onset of the disease. Later in their lives they develop oxidative stress. The importance of understanding the occurrence of reductive stress before any signs or symptoms of Alzheimer’s has theoretical and also practical importance as it may be a very early marker of the disease.








 Oxidative Shielding

I was surprised that one of the very few papers to mention Reductive Stress is by Robert Naviaux, a well-known autism researcher.  He is the one behind Antipurinergic Therapy and Suramin as a therapy.  I just promoted him to my Dean’s List.




Abstract
In this review I report evidence that the mainstream field of oxidative damage biology has been running fast in the wrong direction for more than 50 years. Reactive oxygen species (ROS) and chronic oxidative changes in membrane lipids and proteins found in many chronic diseases are not the result of accidental damage. Instead, these changes are the result of a highly evolved, stereotyped, and protein-catalyzed “oxidative shielding” response that all eukaryotes adopt when placed in a chemically or microbially hostile environment. The machinery of oxidative shielding evolved from pathways of innate immunity designed to protect the cell from attack and limit the spread of infection. Both oxidative and reductive stress trigger oxidative shielding. In the cases in which it has been studied explicitly, functional and metabolic defects occur in the cell before the increase in ROS and oxidative changes. ROS are the response to disease, not the cause. Therefore, it is not the oxidative changes that should be targeted for therapy, but rather the metabolic conditions that create them. This fresh perspective is relevant to diseases that range from autism, type 1 diabetes, type 2 diabetes, cancer, heart disease, schizophrenia, Parkinson's disease, and Alzheimer disease. Research efforts need to be redirected. Oxidative shielding is protective and is a misguided target for therapy. Identification of the causal chemistry and environmental factors that trigger innate immunity and metabolic memory that initiate and sustain oxidative shielding is paramount for human health

In his paper Naviaux is quite right, it is much better to treat the cause of the oxidative/reductive stress; right now I do not know how to do this.



Oxidants as a therapy?

Most people with autism should avoid oxidants.

They should avoid paracetamol/ acetaminophen/Tylenol, because it depletes the body’s main antioxidant, GSH.  This is the mechanism behind why, at very high doses, it can kill you.  If they put NAC inside Tylenol, people could not use it to kill themselves.

One surprising oxidant that some people use to “treat” autism is MMS a, toxic solution of 28% sodium chlorite.  Is this the reason why there is such a cult therapy for drinking “bleach” to “cure” autism?

The only reason I mention this is that one reader whose child responded negatively to NAC and Sulforaphane had responded very positively to three doses of MMS some years ago.

For people with autism, and apparent reductive stress, I certainly do not suggest drinking bleach, but a few days of paracetamol / acetaminophen, as if you had the flu, might tell you a lot.

For most people with autism, Ibuprofen is a much better choice of painkiller;  it does not deplete GSH.









Saturday 2 May 2015

Sustained Release NAC for Autism and Schizophrenia








“Pharmacokinetics” of a typical drug


Today’s post is about what should be the optimal anti-oxidant therapy for autism, schizophrenia, COPD and any other disease in which oxidative stress is present.  You will have to be able to swallow pills, to fully benefit.

NAC seems to be the most potent, safe, anti-oxidant, the only drawbacks are:-

·        Short half-life

·        Can taste/smell bad


In autism, NAC is normally given three times a day, but often it is not practical to give a drug at precise intervals throughout the day.

This is a common problem with many drugs and has been solved long ago – with the sustained release pill.

If you find that four hours after giving NAC there is an increase in irritability, anxiety or stimming, it may be that oxidative stress has already returned.  It may be that other factors have triggered a higher load of oxidative stress.  The way to be sure is just to give a small extra dose of NAC and wait 15 minutes.  If everything returns to normal, you found the problem.

Since you cannot always be present with an extra half dose of NAC, the answer is the sustained release form of NAC.

Since we have seen that oxidative stress triggers all kinds of secondary dysfunctions, the sustained release form of NAC might also help minimize them, since you could have 24 hour protection.  Oxidative stress does not go away while you sleep.

For example, I recall the Polish researcher at Harvard who suggested that oxidative stress might cause central hypothyroidism in autism (low levels of T3 in the brain).

Your body produces the pro-hormone T4 in the thyroid which then circulates throughout the body.  Special enzymes, produced locally, then convert the T4 into the active hormone called T3.  The researcher found that in the autistic brain this enzyme was reduced by oxidative stress.

Many “alternative” doctors, mainly in the US, do prescribe extra T3 hormone to people with autism and indeed other conditions.  Some older ladies across the world are buying T3 hormone, online from Mexico, since their doctor will not prescribe it.  They say it makes them feel better.

As your endocrinologist will tell you, hormones are controlled by so-called feedback loops.  So if you start adding extra T3 hormone, your thyroid will start producing less T4.  Then you need even more supplemental T3.

I did do a little experiment with a small dose of T3, to see if a short term increase in T3 affects “my” kind of autism.  It most definitely does; as does a short term spike in potassium levels.  These are useful diagnostic tests, rather than therapies.

This would suggest that minimizing oxidative stress 24 hours a day, may not just be possible, but also highly beneficial.
 

OTC Sustained Release NAC  (NAC SR)

There actually is an inexpensive Sustained Release NAC , available OTC (without prescription).

  





The problem with currently-available granulated and effervescent tablet compositions is that they release N-acetyl cysteine very rapidly. Thus, the effervescent compositions as well as the granulate compositions currently available on the market achieve a maximum blood plasma level within 1 hr from administration. One matrix tablet formulation does show a maximum blood plasma level at 2-2.5 hrs after administration, although its recipe indicates that granulation was required. The problem with granulation of acetyl cysteine is that if any dissolves, the dissolved material starts to decompose into impurities.
In accordance with the present invention, this problem of overly-rapid release is obviated by providing the N-acetyl cysteine in the form of a tablet or other article made with the rheology modifying acrylic or methacrylic acid-based polymers, or analogues, described in commonly-assigned application Ser. No. 09/559,687, filed Apr. 27, 2000. Tablets made in this manner exhibit controlled release characteristics, thereby allowing the N-acetyl cysteine active ingredient to be released over a longer period of time.

The rheology modifying polymers used in the present invention provide controlled release of the N-acetyl cysteine and other biologically active compounds contained in the inventive tablet, if any, so that when placed in water or body fluid, the polymer swells to form a viscous gel which retards diffusion of the active material.

The advanced bilayer Sustain™ tablets combine 1/3 Quick Release and 2/3 Sustained Release formats to both immediately raise and to maintain blood levels over a longer period of time.* NAC Sustain®  releases in the small intestine over a 8 hour period, compared to the 1.5 hour biological half-life of NAC in the bloodstream.*



NAC in published research

Much currently available data is from very early studies on NAC that indicated that the half-life was about 5 hours, but subsequent studies suggested it is very much shorter, perhaps just 90 minutes.

The following study is quite old, but compares the behaviour of different NAC formulations in 10 volunteers.
































Some definitions:-



A biological half-life or elimination half-life is the time it takes for a substance (drug, radioactive nuclide, or other) to lose one-half of its pharmacologic, physiologic, or radiological activity. In a medical context, the half-life may also describe the time that it takes for the concentration in blood plasma of a substance to reach one-half of its steady-state value (the "plasma half-life").
The relationship between the biological and plasma half-lives of a substance can be complex, due to factors including accumulation in tissues, active metabolites, and receptor interactions

Mean Residence Time

For the medical field, residence time often refers to the amount of time that a drug spends in the body. This is dependent on an individual’s body size, the rate at which the Drug will move through and react within the person’s body, and the amount of the Drug administered. The Mean Residence Time (MRT) in Drug deviates from the previous equations as it is based on a statistical derivation. This still runs off a steady-state volume assumption but then uses the area under a distribution curve to find the average drug dose clearance time. The distribution is determined by numerical data derived from either urinary or plasma data collected. Each drug will have a different residence time based on its chemical composition and technique of administration. Some of these drug molecules will remain in the system for a very short time while others may remain for a lifetime. Since individual molecules are hard to trace, groups of molecules are tracked and the distribution of these is plotted to find a mean residence time.



Conclusion

This post may have been more useful for adult readers, with Asperger’s, who are self-treating.  Many people with Schizophrenia also self-treat with NAC, but they probably do not read autism blogs.

For those unable (yet) to swallow, pills you can have the option of breaking the effervescent tablets in half (or even quarters) to try and maintain a more stable level of NAC.  We sometimes do this, half a 600 mg tablet at school at 11 am,  when needed.  It only seems to be really needed in the pollen allergy season, which seems to trigger more oxidative stress as well as histamine and IL-6.  It works.

One reader of this blog is doing something similar with Bumetanide, he/she is giving it in three daily doses.  Bumetanide also has a short half-life, as does Verapamil.  There is no sustained release form of Bumetanide, but there is for Verapamil.

A final point raised is whether the benefit from NAC comes from it being a precursor to Glutathione (GSH), the body' own master antioxidant, or whether it is actually NAC's own free radical scavenging properties that really matter. It would appear to be the latter, based on the short half life of NAC and the short term beneficial effect.  This would imply that just normalizing GSH is not enough. Studies have shown that normalizing the reduced levels of GSH levels found in autism is readily achievable.








Sunday 9 November 2014

Dr Dolittle, Autism and the Broccoli Sprouts


In the Dr Dolittle books and subsequent films, a man develops the power to communicate with animals.  It seems that one effect of broccoli sprout powder (and we assume Sulforaphane), in autism,  is an urge to talk, not only to humans, but also to animals.

Monty, aged 11 with ASD, took his first dose of 2.5ml of broccoli powder (Supersprouts brand from Australia) and after about half an hour developed euphoria.  The laughter later subsided and throughout the day he was very talkative.  This was relevant speech and not repeating things he had heard previously.  Other than the euphoria, which is the word chosen by elder brother Ted, a nice development was the desire to communicate with the animal world.


After a visit to his favourite ice cream shop, he looked up and saw the big railway bridge. “Bye bye railway station” commented Monty.  Walking up the hill we first passed a kitten, playing by the verge, “Hello baby kitten! Bye bye baby kitten!”  Then a big dog appeared “Hello big white dog and a woman! Bye bye big white dog and woman!”.  This was all rather unexpected.

The next day, another 2.5ml of broccoli powder and the same result.  Euphoria and lots of talking.

Then I decided to start experimenting with the dose.  I gave 1.25ml three times a day.

After the breakfast dose, no euphoria but still plenty of speech.  After lunch, the second dose and the return of mild euphoria.  After the evening dose, more euphoria.  The half-life of Sulforaphane in people is claimed to be about two hours.

Based on this limited experience, I think 2.5ml is about right.  There is no need for more.
  

Cost

I paid AU$ 110 (US$ 95 or GBP 60) for 300g of broccoli powder including shipping.

2.5ml of powder weighs 1.1g.  So using that daily dose of 2.5ml the cost would be 35 US cents (22 UK pence).

My earlier assumption was that a dose of about 18 g of fresh sprouts would produce the required level of Sulforaphane.  In theory, this would be 3 ml of broccoli powder, if it had 100% of the right enzymes in it and none of the bad stuff (called ESP, from the last post).  I was quite surprised at the effect of 2.5ml.  Johns Hopkins told me that most broccoli powders are no good; that is why I looked around before choosing the Australian product.

As a dosage comparison, this supplement is sold in Australia with a suggested daily dose of 5g, which equates to about 11 ml. 

So my “autism dose" looks quite conservative.  I think even half the suggested adult dose would make Monty completely hyper.

Note that the dose of the anti-oxidant NAC used in autism trials is 4X the usual adult dose of NAC and 2X the adult dose for adults with COPD (severe asthma).


The effect on an adult

I tried a scaled up dose myself, but sadly no euphoria followed.

  
Note
Monty is already taking a potent anti-oxidant called NAC, which has been investigated in an autism trial at Stanford.
The broccoli sprouts produce a substance called Sulforaphane (SFN).  This substance activates Nrf2 which upregulates “phase II enzymes”; they increase the body’s antioxidant response.  SFN is also an inhibitor of HDAC (Histone Deacetylase) and this may give SFN the ability to target aberrant epigenetic patterns.
SFN is therefore a secondary anti-oxidant.  It has been shown to improve the body’s response to cancer and environmental toxins.  The chemoprotective properties may result from SFN’s epigenetic properties or the anti-oxidant properties.
SFN was shown in a recent study at Johns Hopkins to improve autism in young adults.  It is not known definitively why it was effective.

Conclusion
My experiment indicates that, in classic autism, Sulforaphane (SFN) does provide a marked and immediate benefit over NAC alone, which is what I set out to determine.

Australian broccoli sprout powder appears to be a relatively cheap and effective way to make SFN at home. 



Tuesday 4 November 2014

Why not Cocoa Flavanols for Autism?







  
Judging by my blog statistics, lots of people are interested in broccoli (Sulforaphane) to treat autism.  Thanks to the patents held by Johns Hopkins, you can expect to hear much more about Sulforaphane in the coming years.

Meanwhile, Columbia University and Mars, the chocolate people, have released a study showing that “flavanoids” in cocoa can do wonders for memory loss in older people.  In effect, they can restore memory in 60 years olds to where it was 20 or 30 years earlier.

If you take a step back and look at what is known by science about oxidative stress and antioxidants, all will become much clearer.


Oxidative Stress Pioneers

In an earlier post we met Paul Talalay, a German-American, who worked at Johns Hopkins.  He specializes in foods that protect you from cancer.  He is Mr Broccoli. 

It turns out that perhaps the real pioneer in this field is a 100% German, called Helmut Sies, who also studies foods that act as antioxidants and nutrients that provide protection from cancer.  We have his very detailed diagram below, that explains the relationship between many of the factors involved in oxidative stress.  I wish I had found it earlier.  I added the six outer boxes.

If you want to read clever studies about this subject, just include Helmut Sies in your search; for example “selenium Helmut Sies”.


Redox Pioneer: Professor Helmut Sies













On this graphic you will see GSH (Glutathione).  When you take NAC (N-acetylcysteine) you directly raise the level of GSH.  When eat broccoli you activate Nrf2, which is a Redox switch, just under the traffic light in the graphic.

When you eat certain flavonoids, like Cocoa, or carotenoids like lycopene (found in tomatoes), you again promote the anti-oxidative free radical scavenger effect.  Look in the blue boxes under diet.

Not on the diagram, we also have flavonolignans which are natural phenols composed of a part flavonoid and a part lignan. As pointed out in a comment in the last post by Seth Bittker, one interesting  flavonolignan is Silibinin, which has anti-oxidant and chemoprotective effects

Note the presence of (Coenzyme) Q10 in the yellow box.  This is part of the mitochondrial cocktail suggested by Dr Kelley from Johns Hopkins for regressive autism.  Q10 is depleted by statins.

Glutathione peroxidases, in the yellow box, are also very interesting.  These are selenium-containing enzymes.  GPx (x goes from 1 to 8)  catalyze the reduction of H2O2 and organic hydroperoxides to harmless products. This function helps to maintain membrane integrity and to reduce further oxidative damage to molecules such as lipids and lipoproteins with the associated increased risk of conditions such as atherosclerosis.  It appears GP1 may be defective in autism and this is contributes to increased oxidative stress.  This area has been well studied due to its impact on heart disease.  You appear to be able to counter the lack of GPx with yeast-bound selenium, other forms of selenium do not work, due to a lack of bioavailability. A post will appear just on Selenium.

There are several other potent (exogenous) antioxidants that we have come across:-

  • Alpha lipoic acid also known as ALA or Tioctic acid (found  in Dr Kelley’s cocktail)
  •   L-Carnosine (studied by Dr Chez )
  •  Vitamin C (suggested by many, including Dr Kelley)


Another day, another anti-oxidant

In human health, two well used anti-oxidant drugs are Alpha lipoic Acid (ALA,  also known as Tioctic acid) and N-acetyl cysteine (NAC).  They share many similar effects.

  •       Potent antioxidant
  •       Increase insulin sensitivity
  •       Improve memory in those with mild cognitive          impairment
  •       May lower blood pressure
  •       Improve behavior in autism

NAC is widely used to treat Chronic obstructive pulmonary disease (COPD) and ALA is used to treat diabetic neuropathy. Perhaps they could be interchanged

·        NAC has a chemoprotective effect
·        ALA has been shown to induce cell cycle arrest in  human breast cancers      cells

Back to Cocoa Flavanols and Mars

This flurry of activity was driven by a well publicized study done at Columbia University Medical Center (CUMC), using a high cocoa flavanol concentration drink provided by Mars.


   
In the CUMC study, 37 healthy volunteers, ages 50 to 69, were randomized to receive either a high-flavanol diet (900 mg of flavanols a day) or a low-flavanol diet (10 mg of flavanols a day) for three months. Brain imaging and memory tests were administered to each participant before and after the study. The brain imaging measured blood volume in the dentate gyrus, a measure of metabolism, and the memory test involved a 20-minute pattern-recognition exercise designed to evaluate a type of memory controlled by the dentate gyrus.
The high-flavanol group also performed significantly better on the memory test. “If a participant had the memory of a typical 60-year-old at the beginning of the study, after three months that person on average had the memory of a typical 30- or 40-year-old,” said Dr. Small. He cautioned, however, that the findings need to be replicated in a larger study—which he and his team plan to do.


This is very impressive.  But how do the other anti-oxidants compare?

Well, without funding from Mars, researchers only managed the money to test ALA and NAC on mice; but as you might expect, the result was similar.


Chronic administration of either LA or NAC improved cognition of 12-month-old SAMP8 mice in both the T-maze footshock avoidance paradigm and the lever press appetitive task without inducing non-specific effects on motor activity, motivation to avoid shock, or body weight. These effects probably occurred directly within the brain, as NAC crossed the blood-brain barrier and accumulated in the brain. Furthermore, treatment of 12-month-old SAMP8 mice with LA reversed all three indexes of oxidative stress. These results support the hypothesis that oxidative stress can lead to cognitive dysfunction and provide evidence for a therapeutic role for antioxidants.



Cocoa Flavanols are good for your heart

This is also good news, but it does seem that antioxidants are generally very good for your heart.

First cocoa.

In this study blood pressure, glucose, insulin and cholesterol were all markedly affected for the better by the cocoa as was cognitive function.

This is great;  but it is what Helmut Sies has been telling the world for many years.


Abstract—Flavanol consumption is favorably associated with cognitive function. We tested the hypothesis that dietary flavanols might improve cognitive function in subjects with mild cognitive impairment. We conducted a double-blind, parallel arm study in 90 elderly individuals with mild cognitive impairment randomized to consume once daily for 8 weeks a drink containing _990 mg (high flavanols), _520 mg (intermediate flavanols), or _45 mg (low flavanols) of cocoa flavanols per day. Cognitive function was assessed by Mini Mental State Examination, Trail Making Test A and B, and verbal fluency test. At the end of the follow-up period, Mini Mental State Examination was similar in the 3 treatment groups (P_0.13). The time required to complete Trail Making Test A and Trail Making Test B was significantly (P_0.05) lower in subjects assigned to high flavanols (38.10_10.94 and 104.10_28.73 seconds, respectively) and intermediate flavanols (40.20_11.35 and 115.97_28.35 seconds, respectively) in comparison with those assigned to low flavanols (52.60_17.97 and 139.23_43.02 seconds, respectively). Similarly, verbal fluency test score was significantly (P_0.05) better in subjects assigned to high flavanols in comparison with those assigned to low flavanols (27.50_6.75 versus 22.30_8.09 words per 60 seconds). Insulin resistance, blood pressure, and lipid peroxidation also decreased among subjects in the high-flavanol and intermediate-flavanol groups. Changes of insulin resistance explained _40% of composite z score variability through the study period (partial r2_0.4013; P_0.0001). To the best of our knowledge, this is the first dietary intervention study demonstrating that the regular consumption of cocoa flavanols might be effective in improving cognitive function in elderly subjects with mild cognitive impairment. This effect appears mediated in part by an improvement in insulin sensitivity.







There are more cocoa studies:-




Cocoa Flavanols as a therapy for Autism

Based on the work of Helmut Sies and the trials funded by Mars, it is pretty obvious that 1,000mg of cocoa flavanols a day would very likely have a marked effect on someone with autism, assuming that is they were not already taking NAC, ALA, Carnosine, Broccoli, Sulforaphane or Selenium.  500 mg should also have an effect.


Choice of antioxidant

The question is what is the ultimate treatment for oxidative stress in autism?

I guess this will depend on exactly what type of autism you have (regressive or not), to what extent you have a mitochondrial dysfunction and whether you have any genetic dysfunction related to oxidative stress.

What works best in Billy, may be suboptimal in Charlie, but still much better than nothing at all.

It looks to me that NAC and ALA will likely be the most potent antioxidants.

If you live in the US, you can buy cocoa flavanols in standardized doses from Mars.  One capsule = 125mg of cocoa flavanols.   I have to add that I am far more inclined to believe Mars, than those supplement companies out there.  You can buy tablets saying they contain 50 mcg of Selenium, but what do they really contain? 

You can also buy “high flavanol” raw (non-alkalized) cocoa powder in big bags.  This lighter brown cocoa has lost far less of the flavonoids in the processing process.  In theory, a 5g teaspoon of the very best one will contain (on a good day) 415 mg of flavavols.

Mars are only supplying their CocoaVia products in North America, so if you want to try cocoa flavanols you have a few options:-

·        8.5 teaspoons of standard raw cocoa  (content will vary widely)
                or
·        1.2 teaspoons of “Chococru” upmarket raw cocoa

                or
·        4 capsules of CocoaVia from Mars  

Each of the above should give you 500mg of cocoa flavanols, which would look like a good starting point.  As with NAC, the studies show that the benefit increases the more you take, but the extra benefit drops off.

If somebody in the US tries CocoaVia, do let us know the result.

Not surprising, Mars tell us on the label that the product is not intended for children.  I do not suppose they ever thought of it being an autism therapy either.

I do like the idea of the redox switch, Nrf2, which Sulforaphane is known to activate.  I also like the idea of the enzyme GP1 that acts as catalyst in the oxidation/reduction process.

The science is around 20 years old and nobody has yet figured it all out;  they probably will not conclusively do so in the next 20 years either.


Food for thought!