UA-45667900-1
Showing posts with label immunomodulation. Show all posts
Showing posts with label immunomodulation. Show all posts

Wednesday 8 May 2024

Immunotherapy from the desert

 



Today’s post revisits the idea of using immunotherapies to treat autism.

Some readers of this blog are already doing this and a significant percentage of those are using IVIG.

Intravenous immunoglobulin (IVIG) is a pooled antibody, and a biological agent used to manage various immunodeficiency states and a plethora of other conditions, including autoimmune, infectious, and inflammatory states.

IVIG is not a precision therapy, it is more a case of when all else fails try IVIG.

In the United States it seems that many insurance companies will cover the cost of long-term IVIG therapy. In other countries the cost greatly limits the use of this therapy.

An interesting observation is that IVIG products can vary significantly in their potency, depending on where they are made. Several readers of this blog have noted this.

I attended the Autism Challenges and Solutions conference recently in Abu Dhabi. I did have a chat with Laila Alayadhi, a researcher and clinician from Saudi Arabia who has been publishing papers about autoimmunity in ASD for decades. She also published a series of studies that examined the potential of camel milk as a therapy. She examined both changes in biological markers of oxidative stress and inflammation as well as measures of autism severity.

Her most recent study is here:-

 

Comparative Study on the Ameliorating Effects of Camel Milkas a Dairy Product on Inflammatory Response in Autism Spectrum Disorders

The link between nutrition and autism spectrum disorder (ASD), as a neurodevelopmental disorder exhibiting impaired social interaction, repetitive behavior, and poor communication skills, has provided a hot point of research that might help use nutritional intervention strategies for managing ASD symptoms. This study examined the possible therapeutic potency of raw and boiled camel milk in reducing neuroinflammation in relation to behavioral characteristics. A blinded study was conducted on 64 children with autism (aged 2–12 years). Group I (n = 23) consisted of children who received raw camel milk; Group II (n = 27) comprised children who received boiled camel milk; and Group III (n = 14) comprised children who received cow milk as a placebo. Changes in plasma tumor necrosis factor-alpha (TNF-α) as pro-inflammatory cytokine in relation to behavioral characteristics evaluated using the Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), and gastrointestinal (GI) symptoms before and after 2 weeks of raw and boiled camel milk therapy. Significantly lower plasma levels of TNF-α were recorded after 2 weeks of camel milk consumption, accompanied by insignificant changes in CARS and significant improvements in SRS and GI symptoms. Alternatively, Group III demonstrated an insignificant TNF-α increase without changes in CARS, SRS, and GI symptoms. This study demonstrated the positive effects of both raw and boiled camel milk in reducing neuroinflammation in patients with ASD. The improvements in the SRS scores and GI symptoms are encouraging. Further trials exploring the potential benefits of camel milk consumption in patients with ASD are highly recommended.

 

 


Apparently camel milk tastes just fine, although Dr Alayadhi told us she had never tried it prior to her research. She has shown than both pasteurized and raw milk are equally effective. I did ask her about other types of milk like goat’s milk and she said they had tried other milks and that only camel milk has shown the immunomodulatory effect.  When asked how much you need to drink, the answer was three glasses a day.


The Dentist

I did chat to another Saudi professor, a pediatric dentist, who gave a presentation about treating children with ASD.  Having had some pretty bad experiences with getting dental treatment and then overcoming them, I did feel I had something in common with Ebtissam Murshid.  I did catch up with her later and shared details of the D-Termined program created by US dentist David Tesini. It is a video training program for dentists how to treat kids with autism. I have written about it previously in this blog. Tesini very much tries to make the visit to the dentist fun, with lots of distractions in his treatment room. Murshid purposefully has blank white walls, believing that autistic kids get upset by bright colors and patterns. Hopefully she watches Tesini’s videos.

Murshid has published a book to help parents prepare their children for their trip to the dentist and, like Tesini, had made a small trial to show that her method is effective.

Some dentists are naturally good at treating the most difficult kids, but most are not.  It is impossible to predict.

A really good dentist needs neither restraint, like a papoose board, or sedation. If general anesthetic is needed, then something is not being done right. Kids with severe autism can be treated with local anesthetic just like other kids, they just need to go through a familiarization training like Tesini/Murshid use.

 

Back to immunotherapy

I did have many conversations with Carmello Rizzo who is an Italian doctor interested in both diet and autoimmunity to treat autism. He is a feature at many autism conferences and is a great speaker. He was telling me about Enzyme Potentiated Desensitization (EPD), an overlooked way to treat allergy care.

EPD was invented in the 1960s by a British immunologist Dr Len McEwen, at St. Mary’s Hospital, Paddington. EPD is approved in the United Kingdom for the treatment of hay fever, food allergy and intolerance and environmental allergies.

It is an unlicensed product (i.e. not a drug), it is available only on a “named patient” basis.

EPD is not the same as allergy shots.

Allergy shots, also known as allergy immunotherapy, are injections used to treat allergies over a long period of time. They work by gradually desensitizing your body to the allergens that trigger your allergy symptoms.

Allergy shots typically involve two phases, buildup and maintenance.

It is an escalating dose immunotherapy, when you gradually increase the exposure level of the identified allergen.

The buildup phase lasts for 3 to 6 months. You receive shots 1 to 3 times a week. The doctor will gradually increase the amount of allergen in each shot to help your body build tolerance.

In the maintenance phase you need shots less frequently, usually about once a month. This phase can continue for 3 to 5 years or even longer depending on your progress.

I was never interested in allergy shots because there are so many injections needed.

I found EPD of interest because you take just two shots a year and the effect may potentially control the allergy after 2 or 3 years.

EPD is not expensive and I suppose that is why nobody wanted to invested the tens of millions of dollars to get approval by the FDA. It remains approved for use in the UK, which is ultra conservative when it comes to medicines.

Carmello Rizzo is offering EPD in Italy and elsewhere.

 

Gene therapy for autism?

I did go to a presentation with an interesting title:

Developing effective therapeutics for Autism Spectrum Disorder

It was not really what I was expecting. It was a young MIT researcher talking about the potential to develop gene therapies to replace mutated genes with a new ones. They are doing this in a model of autism caused by a mutated copy of the SHANK3 gene.

I called him Dr Viral Vector and did have a chat with him. The most interesting thing about his technology is that not only can he target a specific type of cell, but he can target a specific part of the brain, or indeed any part of the body.

At the moment they inject a virus carrying the new gene directly into the brain. That is not going to go down so well with human subjects. The next stage is to try injecting the virus into a vein.

I did talk about the two gene therapies for Rett syndrome now in human trials in my presentation. The ultimate problem is the likely $3 million cost. 

You can use gene therapy as an immunotherapy. 

 

Artemis

At the conference I was asked about a gene called DCLRE1C, it encodes the DCLRE1C protein, also known as Artemis.

 


Artémis (Diane), the huntress. Roman copy of a Greek statue, 2nd century. Galleria dei Candelabri

Source: By Jean-Pol GRANDMONT - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18604889

 

The Artemis protein is named after the Greek goddess Artemis, who was associated with the hunt, wilderness, wild animals, childbirth, and protection. This connection likely comes from the crucial role Artemis plays in DNA repair, which is essential for maintaining the integrity of the genetic material, like a protector safeguarding the building blocks of life.

Complete loss of function in DCLRE1C typically causes severe combined immunodeficiency. This is called Artemis-deficient severe combined immunodeficiency (ART-SCID).

Fortunately many possible mutations only partially impair the function of the DCLRE1C gene. They can lead to a spectrum of conditions, including atypical SCID, Omenn syndrome, Hyper IgM syndrome, and even just antibody deficiency. These conditions may have milder symptoms compared to classic SCID.

IVIG is a beneficial therapy for immunodeficiency; but is very expensive and not curative.

Humans all have 2 copies of the DCLRE1C and it is theoretically possible to increase expression of the good copy. But that is another story.

 

A gene therapy already exists for full-on ART-SCID.

Lentiviral Gene Therapy for Artemis-Deficient SCID


Why not use it in less severe cases?

The problem is going to be money, both for a lifetime on IVIG or a “hopefully” one-off gene therapy.

One lady in the audience of my talk had herself taken an expensive gene therapy and was not impressed.

  

Other interesting presentations

Pierre Drapeau from McGill University spoke about trying to repurpose a cheap old drug, called Pimozide, to treat motor neuron disease /ALS.  This was interesting because the process is similar to repurposing a drug for autism.

Pimozide is an old antipsychotic drug and it seems to work in ALS through its effect on a type of calcium channel called the T-type. Yes, just as in much autism, calcium channels are misbehaving.

The drawback of Pimozide is that it also blocks dopamine receptors in the brain, which is good if you have Tourette’s, but if you have ALS you then get symptoms of Parkinson’s as a side effect.

The solution is to tinker with the molecule and find a version (an analog) that will do the business with the T channels without causing tremors.  It looks like, via trial and error, this is nearly solved.

The whole process has already been going on for many years, it will take many more.

Life expectancy with ALS is only 2-5 years and they struggle to find test subjects in Canada. It looks like they may do trials in China.

 

An eye opener

A presentation with a very hard to digest title was also an eye opener. You can take a picture of the cornea in your eye and accurately diagnose all kinds of disorders. They started with peripheral neuropathy in diabetics and most recently moved on to people with autism. Using artificial intelligence (AI) they can now make a diagnosis just based on the nerve loss they observe in the cornea. They also can potentially measure the effect of therapies by the regeneration of those nerve fibers.  This is really clever. When Rayaz Malik started down this path, all the neurologists thought he was mad. Many years later and corneal confocal microscopy is widely used around the world, but not yet for autism diagnosis.

Antonio Persico is a well known autism clinician, he appeared virtually. He was mainly talking about antipsychotics. I had expected rather more. 

 

Conclusion

Immunotherapy addresses one of the four problem areas in autism. There cannot be a one size fits all approach, but you can certainly try camel milk. Addressing food allergy and intolerance is relatively straightforward and you do not need any fancy expensive genetic testing, as Carmello Rizzo pointed out.

There are people for whom genetic testing and/or a spinal tap opens the door to a precise diagnosis and hopefully treatment. That proved to be an unexpected controversial issue in my presentation.

My talk at the conference was all about using personalized medicine to treat autism. The organizer of the event reads this blog and knows that I am rather an outsider, since I am more in treating autism than just researching it.

I had a two and a half hour time slot and I made sure to use it all. 

Advances in Personalized Medicine to Treat Autism

I should mention that I also had some long conversations with Paul Shattock, who pretty much founded the gluten and casein free diet years ago, back at the University of Sunderland. If you are interested in the history of autism, he is a great person to talk to. He is nearly 80 years old, but still has a sharp sense of humour. He has stumbled into more than his fair share of controversies. In Abu Dhabi his opinions and observations were widely shared by other speakers. One younger American speaker thought his views were dangerous; had he taken the time to talk to Paul, he would have found them pretty well thought out. I did ask Paul what has happened to his old friend Andew Wakefield – apparently making another film.

 



 

Tuesday 14 March 2023

Differentially expressed immune-related genes (dIRGs) in Changsha and Rapamycin/mTOR


 


I did write about an interesting paper last year concerning calcium channels and intellectual disability; it was from a city in China called Changsha.

Epiphany: Calcium channelopathies and intellectual disability

Changsha is on the old train line and the new high speed line from Beijing to Hong Kong. So like many other people, I must have passed by this city of 10 million on the old line, as a backpacking student many years ago.

After three years of closure, China announced that it is reopening to foreign visitors. China is well worth a visit and their high speed trains make travel much easier than it used to be.

Before moving on to today’s paper, I will mention the case study below from one of China’s top hospitals, the PLA hospital in Beijing.  They used the well known mTOR inhibitor Rapamycin to successfully treat an 8 year old boy with idiopathic (of unknown cause) autism.  This drug has been used in models of autism. The mTOR inhibitor Everolimus is approved as adjunctive therapy for a single gene autism called TSC to treat seizures. Click on the link below to read the one page case report.

Rapamycin/Sirolimus Improves the Behavior of an 8-Year-Old Boy With Nonsyndromic Autism Spectrum Disorder

Some readers have mentioned this case study and at least one has made a trial.  In that case the drug was well tolerated but did not moderate autism symptoms.

Mammalian target of rapamycin (mTOR) regulates cell proliferation, autophagy, and apoptosis by participating in multiple signaling pathways in the body. Studies have shown that the mTOR signaling pathway is also associated with cancer, arthritis, insulin resistance, osteoporosis, and other diseases including some autism.

Today we return to Changsha for another interesting paper about the altered immune system in autism and other neurological conditions.  It is an interesting study because it is based on samples from 2,500 brains of controls and patients with six major brain disorders - schizophrenia, bipolar disorder, autism spectrum disorder, major depressive disorder, Alzheimer’s disease, and Parkinson’s disease.

One of the reasons so little progress has been made in treating any neurological condition is the inability to take physical samples to experiment with.  All the 2,500 brain samples are taken from brain banks, not live people.

When it comes to autism that means the sample likely reflects severe autism (DSM3 autism).  No self-identified autism in today’s samples, their brains are unlikely to be donated to medical science. 


Immunity-linked genes expressed differently in brains of autistic people 

Genes involved in immune system function have atypical expression patterns in the brains of people with some neurological and psychiatric conditions, including autism, according to a new study of thousands of postmortem brain samples.

Of the 1,275 immune genes studied, 765 — 60 percent — showed elevated or reduced expression in the brains of adults with one of six conditions: autism, schizophrenia, bipolar disorder, depression, Alzheimer’s disease or Parkinson’s disease. The expression patterns varied by condition, suggesting that there are distinct “signatures” for each one, says lead researcher Chunyu Liu, professor of psychiatry and behavioral sciences at Upstate Medical University in Syracuse, New York.

The expression of immune genes could potentially serve as a marker for inflammation, Liu says. Such immune activation — particularly while in utero — has been associated with autism, though the mechanisms are far from clear.

“My impression is the immune system is not really a very minor player in brain disorders,” Liu says. “It is a major player.”

It’s impossible to discern from this study whether immune activation played a role in contributing to any condition or whether the condition itself led to altered immune activation, says Christopher Coe, professor emeritus of biopsychology at the University of Wisconsin-Madison, who was not involved in the work.

“A study of the postmortem brain is informative,” Coe says. “But not definitive.”

Liu and his team analyzed the expression levels of 1,275 immune genes in 2,467 postmortem brain samples, including 103 from autistic people and 1,178 from controls. The data came from two transcriptomics databases — ArrayExpress and the Gene Expression Omnibus — and other previously published studies.

Brains from autistic people had, on average, 275 genes with expression levels that differed from those of controls; brains from people with Alzheimer’s disease had 638 differentially expressed genes, followed by those with schizophrenia (220), Parkinson’s (97), bipolar disorder (58) and depression (27).

Autistic men’s expression levels varied more than those of autistic women, whereas the brains of women with depression showed more variation than those of men with depression. The other four conditions showed no sex differences.

The autism-related expression pattern more closely resembled those of the neurological conditions — Alzheimer’s and Parkinson’s — than the other psychiatric ones. Neurological conditions, by definition, must have a known physical signature in the brain, such as Parkinson’s characteristic loss of dopaminergic neurons. Researchers have not found such a signature for autism.

“This [similarity] just provides some kind of additional direction we should look into,” Liu says. “Maybe one day we will understand the pathology better.”

The findings were published in Molecular Psychiatry in November.

Two genes, CRH and TAC1, are the most commonly altered among the conditions: CRH is downregulated in all of the conditions but Parkinson’s, and TAC1 is downregulated in all but depression. Both genes affect the activation of microglia, the brain’s immune cells.

Atypical microglial activation may be “derailing normal neurogenesis and synaptogenesis,” Coe says, disrupting neuronal activity similarly across the conditions.

Genes involved in astrocyte and synapse function are similarly expressed in people with autism, schizophrenia or bipolar disorder, a 2018 study of postmortem brain tissue found. But microglial genes are overexpressed in autism alone, that study found.

People with more intensely upregulated immune genes could have a “neuroinflammatory condition,” says Michael Benros, professor and head of research on biological and precision psychiatry at the University of Copenhagen in Denmark, who was not involved in the work.

“It could be interesting to try to identify these potential subgroups and of course provide them more specific treatment,” Benros says.

Most of the expression changes observed in the brain tissue samples did not appear in datasets of gene expression patterns in blood samples from people with the same conditions, the study shows. This “somewhat surprising” finding indicates the importance of studying brain tissue, says Cynthia Schumann, professor of psychiatry and behavioral sciences at the University of California Davis MIND Institute, who was not involved in the study.

“If you want to know about the brain, you have to look at the brain itself,” Schumann says.

 

I am always reminding people not to think that blood samples are going to tell them how to treat autism.  The above commentary also highlights this fact.  If you want to know what is going on in the brain, you have to look there or in spinal fluid.  Looking just at blood samples may send an investigation in completely the wrong direction. Spinal fluid flows around the brain and spinal cord to help cushion them from injury and provide nutrients. Testing spinal fluid requires an invasive procedure, parents do not like it and so it is very rarely carried out until adulthood.  Time has then been lost.

 

Here is the link to the full paper and some highlights I noted.

 

Neuroimmune transcriptome changes in patient brains of psychiatric and neurological disorders 

Neuroinflammation has been implicated in multiple brain disorders but the extent and the magnitude of change in immune-related genes (IRGs) across distinct brain disorders has not been directly compared. In this study, 1275 IRGs were curated and their expression changes investigated in 2467 postmortem brains of controls and patients with six major brain disorders, including schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), major depressive disorder (MDD), Alzheimer’s disease (AD), and Parkinson’s disease (PD). There were 865 IRGs present across all microarray and RNA-seq datasets. More than 60% of the IRGs had significantly altered expression in at least one of the six disorders. The differentially expressed immune-related genes (dIRGs) shared across disorders were mainly related to innate immunity. Moreover, sex, tissue, and putative cell type were systematically evaluated for immune alterations in different neuropsychiatric disorders. Co-expression networks revealed that transcripts of the neuroimmune systems interacted with neuronal-systems, both of which contribute to the pathology of brain disorders. However, only a few genes with expression changes were also identified as containing risk variants in genome-wide association studies. The transcriptome alterations at gene and network levels may clarify the immune-related pathophysiology and help to better define neuropsychiatric and neurological disorders. 

 

Multiple lines of evidence support the notion that the immune system is involved in major “brain disorders,” including psychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD), brain development disorders such as autism spectrum disorder (ASD), and neurodegenerative diseases such as Alzheimer's disease (AD), and Parkinson's disease (PD). Patients with these brain diseases share deficits in cognition, blunted mood, restricted sociability and abnormal behavior to various degrees. Transcriptome studies have identified expression alterations of immune-related genes (IRGs) in 49 postmortem brains of AD, PD, ASD, SCZ and BD separately. Cross disorder transcriptomic studies further highlighted changes in IRGs. At the protein level, several peripheral cytokines showed reproducible disease-specific changes in a meta-analysis. Since brain dysfunction is considered the major cause of these disorders, studying immune gene expression changes in patient brains may reveal mechanistic connections between immune system genes and brain dysfunction. Most previous studies were limited to the analysis of  individual disorders. There is no comprehensive comparison of the pattern and extent of inflammation-related changes in terms of immune constructs (subnetworks), neuro-immune interaction, genetic contribution, and relationship between diseases.  Neuroinflammation, an immune response taking place within the central nervous system,  can be activated by psychological stress, aging, infection, trauma, ischemia, and toxins. It is regulated by sex, tissue type and genetics, many of which are known disease risk factors for both psychiatric and neurological diseases. The primary function of neuroinflammation is to maintain brain homeostasis through protection and repair. Abnormal neuroinflammation activation could lead to dysregulation of mood, social behaviors, and cognitive abilities. Offspring who were fetuses when their mothers’ immune system was activated (MIA) showed dopaminergic hyperfunction, cognitive impairment, and behavioral abnormalities as adults. Alternatively, acute and chronic neuroinflammation in adulthood can also alter cognition and behavior. In animal models, both adult and developmental maternal immune activation in the periphery can lead to increases in pro-inflammatory cytokines in the brain , similar to what is found in humans with major mental illness.  Previous studies identified immune gene dysregulations in brains of patients with several major brain disorders. For example, Gandal et al. found that up-regulated genes and isoforms in SCZ, BD, and ASD were enriched in pathways such as inflammatory response and response to cytokines. One brain co-expression module up-regulated specifically in MDD was enriched for genes of cytokine-cytokine interactions, and hormone activity pathways. The association of neurological diseases such as AD and PD with IRGs has also been reported. These studies examined the changes of immune system as a whole without going into details of specific subnetworks, the disease signature, or genetic versus environmental contribution. We hypothesize that expression changes of specific subsets of IRGs constitute part of the transcriptome signatures that distinguishes diseases. Since tissue specificity, sex and genetics all could influence such transcriptome signatures, we analyzed their effects. Furthermore, we expect that neurological diseases and psychiatric disorders bear transcriptomic changes that may help to address how similar immunological mechanisms lead to distinct brain disorders. The current boundary between neurological diseases and psychiatric disorders is primarily the presence of known pathology. Neurological diseases have more robust histological changes while psychiatric disorders have more subtle subcellular changes. Nonetheless, pathology evidence is always a subject to be revised with new research.  To investigate immune-related signatures of transcriptome dysregulation in brains of six neurological and psychiatric disorders, we studied a selected list of 1,275 genes known to be associated with neuroinflammation and interrogated their expression across disorders. We collected and analyzed existing transcriptome data of 2,467 postmortem brain samples from donors with AD, ASD, BD, MDD, PD, SCZ and healthy controls (CTL). We identified the differentially expressed IRGs shared across disorders or specific to each disorder, and their related coexpression modules (Fig. S1). These genes and their networks and pathways provided important insight into how immunity may contribute to the risk of these neurological and psychiatric disorders, with a potential to refine disease classification.

 

The two most shared dIRGs are Corticotropin-releasing hormone (CRH) and Tachykinin Precursor 1 (TAC1), which were differentially expressed in five of the six diseases (Fig. 2D). They both involve innate immunity according to the databases we used and literature. CRH was downregulated in five of the six disorders; the exception was PD. CRH can regulate innate immune activation with neurotensin (NT), stimulating mast cells, endothelia, and microglia. TAC1 was down-regulated in five of the six disorders, the exception being MDD.  TAC1 encodes four products of substance P, which can alter the immune functions of activated microglia and astrocytes. Independent RNA-seq data confirmed both CRH and TAC1 findings. These transcripts are also neuromodulators and have action on neurons so they have roles in addition to immune functions. 

This indicated that even though immune dysfunction is widespread in the six disorders, signature patterns of the subset innate immune genes are sufficient to differentiate neurological from psychiatric disorders. 

Disease-specific IRMs in AD, ASD, and PD imply distinct biological processes.

We also searched for disease-specific IRMs for each disorder. We used rWGCNA to construct brain co-expression networks in the brains of each disorder and of controls, then compared them against each other to identify disease-specific IRMs (Fig.5A). Based on preservation results of one disease versus controls and against all other diseases (Fig. 5B, z-summary < 10), as well as immune gene enrichment results (Table S9; enrichment q.value < 0.05), we identified six disease-specific IRMs, including one for AD, three for ASD, and two for PD. We did not detect disease-specific IRMs for SCZ, BD, or MDD, which are considered psychiatric disorders. The disease-specific IRMs were enriched for various functions (Fig. 5C, Table S9). The AD specific IRM was enriched for neuron part (GO:0097458, q.value= 4.57E-4) and presynapse (GO:0098793, q.value = 4.57E-4). The PD-specific IRM was enriched for positive regulation of  angiogenesis (GO:0045766, q.value = 9.65E-06) and secretory granule (GO:0030141, q.value= 220 6.31E-06). The ASD-specific IRMs were enriched for developmental biological processes such as negative regulation of cell proliferation and growth factor receptor binding. 

Our reader Eszter will be pleased to see that the research links the differentially expressed genes more with Alzheimer’s than with Bipolar or Schizophrenia.  She has noted the overlap in effective therapies between Alzheimer’s and autism. 

We came up with four major findings of the neuroimmune system in brains of different neuropsychiatric disorders: 1) the innate immune system carries more alterations than the adaptive immune systems in the six disorders; 2) the altered immune systems interact with other biological pathways and networks contributing to the risk of disorders; 3) common SNPs have a limited contribution to immune-related disease risks, suggesting the environmental contribution may be substantial; and 4) the expression profiles of dIRGs, particularly that of innate immune genes, group neurodevelopment disorder ASD with neurological diseases (AD and PD) instead of with psychiatric disorders (BD, MDD, and SCZ) Dysregulation of the innate immune system is a common denominator for all six brain disorders. We found that more than half of the shared dIRGs and dIRG-enriched pathways were related to the innate immune system. The two most shared dIRGs, TAC1 and CRH, have known effects on innate immune activation(66, 67). Both genes were downregulated in patient brains. Additionally, TLR1/2 mediates microglial activity, which could contribute to neuronal death through the release of inflammatory mediators. Furthermore, innate immunity is critical in maintaining homeostasis in the brain. For example, the innate immune system has been reported to function in the CNS's resilience and in synaptic pruning throughout brain growth. When homeostasis is disrupted, the abnormal innate immunity may impact a wide range of brain functions.

 

Microglia are affected specifically in autism and Alzheimer’s.

Microglia are highlighted in the immune changes in brains of AD and ASD in this study. Microglia is the major cell type participating in the brain’s immune system. Our analyses showed that the IRM12 coexpression module was enriched for microglia genes and associated with inflammatory transcriptional change in AD and ASD but not the other four diseases. Does this suggest that microglial dysfunction contributes more to AD and ASD than to the other disorders? The PsychENCODE study showed the microglial module upregulated in ASD and downregulated in SCZ and BD(16), but the fold changes in SCZ and BD were much smaller than that in ASD (Fig 7.B in original paper(16)). Larger sample size may be needed to detect microglia contribution to other disorders such as SCZ and BD. 

Sex contributes to the disease-related immune changes too. Our results revealed sex-bias dysregulation of IRGs in brains of ASD and MDD but not in other disorders. These two  disorders are known to have sex differences in prevalence. Previous studies also have suggested that sex differences in stress-related neuroinflammation might account for the overall sex bias in stress-linked psychiatric disorders, including female bias in MDD and male bias in ASD. We did not observe sex-biased IRGs in other diseases with known sex-biased prevalence, such as SCZ and AD suggesting that sex differences in SCZ and AD may not involve IRG changes. 

Our results showed how immune system dysregulation may influence gene expression of the networked other non-immune genes and contribute to the pathology of these diseases specifically. Six disease-specific IRMs were detected in AD, ASD, and PD, showing that several functions of the immune-related networks also involved in corresponding disorders such as presynaptic related AD-IRM and Growth factor receptors-related ASD-IRMs. Presynaptic proteins are essential for synaptic function and are related to cognitive impairments in AD(85). Growth factor receptors and N-acetylcysteine are involved in the etiology of ASD. Secretogranin may be a pivotal component of the neuroendocrine pathway and play an essential role in neuronal communication and neurotransmitter release in PD (88). Furthermore, the immune system has been found to regulate presynaptic proteins(89), EGFR(90), and secretogranin(88). Our results indicate that alterations of the immune network can be disease-specific, affecting specific coexpression networks and driving distinct risk of each disorder. 

To our surprise, neurodevelopment disorder ASD was grouped with neurological diseases (AD  and PD) instead of with psychiatric disorders (BD, MDD, and SCZ) according to the changes of IRGs, particularly innate immune genes. Hierarchical clustering analysis based on the effect size of IRGs placed the presumed psychiatric disorder ASD with other neurological diseases. Previous studies have reported that ASD patients exhibited more neurological and immunological problems(99-102) compared to healthy people and to other brain disorders. As more etiologies are uncovered, the traditional classification of these diseases is increasingly challenged(93). Furthermore, we found that dIRGs change more in neurological diseases (AD, PD, and ASD) than in the psychiatric disorders (BD, SCZ, and MDD). It suggested that neuroimmunity dysregulation is more severe in neurological diseases than in psychiatric disorders, led by AD. Neuroimmunity may help to redefine disease classification in the future.

 


Conclusion 

It is good to see there is excellent research coming from China. Our reader Stephen has noted some interesting research underway in Russia. Look both East and West.

Intranasal Inhalations of M2 Macrophage Soluble Factors in Children With Developmental Speech Disorders

In today’s paper the focus was just on immune related genes.  That in itself is a big step forward, since in this blog we are well aware of the key role of the immune system in autism.

In this study all of autism was grouped together, when we know there will be many subgroups with totally different profiles.  In terms of treatment, you would need to know which subgroup you are part of.

But it does tell you that part of your autism therapy is going to have to account for an altered immune status. 

I would have to say that it does follow Western research in getting a bit lost in the detail.  We know that they found 275 of the immune genes mis-expressed in autism.

How about presenting a simple list of the 275 with whether the genes were over or under expressed ?

There are vast spreadsheets in the supplemental data, but nothing as down to earth and common sense as that.

Instead the researchers were preoccupied with overlaps between different conditions and churning out statistics.

It is notable from the first paper I mentioned today that one of the very top Chinese hospitals is actually trying to apply personalized medicine using Rapamycin for autism and publishing a case history. Bravo !!

A logical next step after trying to modify mTOR would be to try epigenetic modification therapy using HDAC inhibition.

One issue here is the age at which therapy begins, not surprisingly some therapies need to commence at birth (or ideally before) and do not give much effect later in life.

Romidepsin is one HDAC inhibitor used in the research.

In the studies below Chinese researchers in the US are making progress. 

In 2018:

Autism's social deficits are reversed by an anti-cancer drug

Using an epigenetic mechanism, romidepsin restored gene expression and alleviated social deficits in animal models of autism.

"In the autism model, HDAC2 is abnormally high, which makes the chromatin in the nucleus very tight, preventing genetic material from accessing the transcriptional machinery it needs to be expressed," said Yan. "Once HDAC2 is upregulated, it diminishes genes that should not be suppressed, and leads to behavioral changes, such as the autism-like social deficits."

But the anti-cancer drug romidepsin, a highly potent HDAC inhibitor, turned down the effects of HDAC2, allowing genes involved in neuronal signaling to be expressed normally.

The rescue effect on gene expression was widespread. When Yan and her co-authors conducted genome-wide screening at the Genomics and Bioinformatics Core at UB's New York State Center of Excellence in Bioinformatics and Life Sciences, they found that romidepsin restored the majority of the more than 200 genes that were suppressed in the autism animal model they used.

In 2021:

Synergistic inhibition of histone modifiers produces therapeutic effects in adult Shank3-deficient mice

 We found that combined administration of the class I histone deacetylase inhibitor Romidepsin and the histone demethylase LSD1 inhibitor GSK-LSD1 persistently ameliorated the autism-like social preference deficits, while each individual drug alone was largely ineffective.

 

We now need some leading researchers/clinicians in China to actually translate this approach to humans and see if it works.  Hopefully the PLA hospital in Beijing are keeping an eye out on what Zhen Yan is up to at the University of Buffalo, NY.  With luck they will not wait 20 years to try it!





Friday 7 August 2015

Has anyone tried Cinnamon (or Sodium Benzoate) for Autism?




I have written several posts about Cinnamon and its metabolite Sodium Benzoate. I know that some readers are now using it for its cholesterol lowering and insulin sensitivity improving properties that were shown in the clinical trials I highlighted.













But has anyone tried it for autism?


The first time I wrote about it I did acquire a big bag of the correct variety (Cinnamomum verum or Ceylon Cinnamon) and also a bag of the very high flavanol (epicatechin) cocoa.  My cinnamon trial was limited to seeing what it looked/tasted like when added to the Polypill concoction Monty, aged 12 with ASD, drinks at breakfast.  It was rather like adding a teaspoonful of fine sand, so not much “testing” took place.

Now that Monty has shown an ability, and even enjoyment, for pill swallowing, things are much simpler.  The cinnamon can be put inside gelatin capsules; it’s a little messy, but no great trouble.

Having recently been researching about the gene enhancers and silencers, which are controlled by the 95% of your DNA that rarely gets studied (the exome is the part everyone studies and some people test for abnormalities), it did occur to me that I already have two safe substances, that I have both researched and acquired, which have a gene expression enhancing effect.


Cinnamon “Experiment”

Even though summer is the wrong time to test anything in Monty, aged 12 with ASD, since his pollen allergy triggers a regression, I decided to make a trial.  I have 1 kg of this special cinnamon, and so it’s not like I need to ration it.

I gave about 2.5ml of cinnamon split into three daily doses using some gelatin capsules that used to be full of another supplement (choline).


Results so far:-

Complete absence of summertime bad behaviors, which are already 90% subdued by Verapamil, but do sometimes present themselves.

Interesting behavioral developments:- 


·        Like many people with autism, Monty likes order.  So turn off lights, shut doors, wash dirty hands etc.  The latest surprise was that when I took something from the rear of my car and he shut the tail gate (boot). Given the size of my car, for someone of his small stature, this is quite an achievement, since he really has to stretch on his toes.  This is the first time he has ever done this and now he does it every time.

·        Monty can brush his teeth and get dressed, but his clothes are sitting there on his bed.  The other day when told to go upstairs and brush his teeth, he returned fully clothed, having chosen/found his clothes all by himself.

·        On awakening, sometimes Monty might say “can I have a glass of water”, to which he might be told go downstairs and get water, and usually someone would go down with him.  Recently I find him in the early morning sitting at the kitchen table playing on his iPad with the glass of water he served himself with.

·        Piano playing also seems to be going very well, indeed on Wednesday after his piano lesson the teacher started telling me that she has taught 73 children with autism and never has she had someone start at his beginning level and progress so far.  This is clearly not down to cinnamon (it was greatly helped by bumetanide, atorvastatin and NAC), but why is she telling me this now, after over three years of lessons?

·        Speech for people with Classic autism, even when it develops, is always a little odd, reading a book out loud or singing does not mean you can speak.  It is as if the mother tongue is a foreign language and needs to be translated in your head. So for me it would be like speaking German.  It is my fourth language, I know lots of words, but I cannot think in German.

Many people with autism like to know their schedule. Today Monty was going to go swimming, amongst other things, but a change of plan meant we had gone to eat.  So I said to Monty “I am too full to go swimming, we will go later”.

A few minutes later as I stopped the car, Monty says “swimming when Dad feels better”.

There is nothing super clever in that statement, but it is not the sort of unprompted comment I usually get to hear for son number two.


These are all little steps and may be coincidental, but normally with Monty things go backwards in summer.  Even effective interventions appear to lose their effectiveness. 

I still keep an open mind on cinnamon, but I did just order a big bag of empty gelatin capsules.


Anybody else tried Cinnamon?

It would be useful to know from people who found that Bumetanide or Sulforaphane were effective for autism, whether cinnamon also has a positive effect.

There are several reasons why it may help:-

·        Change in NMDA signaling, affecting the excitatory/inhibitory balance
·        Affects gene expression related to oxidative stress (why cinnamon helps reduce cholesterol and improve insulin sensitivity)
·        Increases BDNF, Brain-derived neurotrophic factor  (aka “brain fertilizer”)
·        NaB (sodium benzoate) reduces Microglial and Astroglial Inflammatory Responses
·        NaB exerts its anti-inflammatory effect through the inhibition of NF-κB
·        NaB suppresses the activation of p21ras in microglia
·        NaB can also regulate many immune signaling pathways responsible for inflammation, glial cell activation, switching of T-helper cells, modulation of regulatory T cells

NF-κB is the master regulator of inflammation in the same way that Nrf 2 is for oxidative stress.

Incorrect regulation of NF-κB has been linked to cancer, inflammatory, and autoimmune diseases, septic shock, viral infection, and improper immune development. NF-κB has also been implicated in processes of synaptic plasticity and memory


In autism it seems that we want to activate Nrf2 but to inhibit NF-κB.  Safely inhibiting NF-κB is the Holy Grail for many diseases.


We covered RAS in earlier posts.  The RAS protein is abnormally active in cancer.

So called RASopathies are developmental syndromes caused by mutations in genes that alter the Ras subfamily.  RASopathies are often associated with autistic symptoms and/or intellectual disability/mental retardation.

Common inhibitors of RAS are statins and Farnesyltransferase inhibitors.  Most Farnesyltransferase inhibitors are expensive cancer research drugs, but one is gingerol.

Since statins do very clearly improve the autism of Monty, aged 12 with ASD, I did try adding gingerol as my “Statin plus” therapy.  At the dose I used there was no noticeable effect.

However, I now learn that “NaB suppressed the activation of p21ras in microglia”.  P21, RAS, and p21ras are different names for the same protein.  So it would seem that NaB is therefore a RAS inhibitor and perhaps a more potent one than gingerol.
   
Too much BDNF, just like too much lawn fertilizer, may not be a good thing.

BDNF is low in schizophrenia, but is thought to be elevated in “most” autism.
   



 Abstract
Upon activation, microglia and astrocytes produce a number of proinflammatory molecules that participate in the pathophysiology of several neurodegenerative disorders. This study explores the anti-inflammatory property of cinnamon metabolite sodium benzoate (NaB) in microglia and astrocytes. NaB, but not sodium formate, was found to inhibit LPS-induced expression of inducible NO synthase (iNOS), proinflammatory cytokines (TNF-α and IL-1β) and surface markers (CD11b, CD11c, and CD68) in mouse microglia. Similarly, NaB also inhibited fibrillar amyloid β (Aβ)-, prion peptide-, double-stranded RNA (polyinosinic-polycytidylic acid)-, HIV-1 Tat-, 1-methyl-4-phenylpyridinium+-, IL-1β-, and IL-12 p402-induced microglial expression of iNOS. In addition to microglia, NaB also suppressed the expression of iNOS in mouse peritoneal macrophages and primary human astrocytes. Inhibition of NF-κB activation by NaB suggests that NaB exerts its anti-inflammatory effect through the inhibition of NF-κB. Although NaB reduced the level of cholesterol in vivo in mice, reversal of the inhibitory effect of NaB on iNOS expression, and NF-κB activation by hydroxymethylglutaryl-CoA, mevalonate, and farnesyl pyrophosphate, but not cholesterol and ubiquinone, suggests that depletion of intermediates, but not end products, of the mevalonate pathway is involved in the anti-inflammatory effect of NaB. Furthermore, we demonstrate that an inhibitor of p21ras farnesyl protein transferase suppressed the expression of iNOS, that activation of p21ras alone was sufficient to induce the expression of iNOS, and that NaB suppressed the activation of p21ras in microglia. These results highlight a novel anti-inflammatory role of NaB via modulation of the mevalonate pathway and p21ras.

  



ABSTRACT Experimental allergic encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), the most common human demyelinating disease of the central nervous system. Sodium benzoate (NaB), a metabolite of cinnamon and a FDA-approved drug against urea cycle disorders in children, is a widely used food additive, which is long known for its microbicidal effect. However, recent studies reveal that apart from its microbicidal effects, NaB can also regulate many immune signaling pathways responsible for inflammation, glial cell activation, switching of T-helper cells, modulation of regulatory T cells, cell-to-cell contact, and migration. As a result, NaB alters the neuroimmunology of EAE and ameliorates the disease process of EAE. In this review, we have made an honest attempt to analyze these newly-discovered immunomodulatory activities of NaB and associated mechanisms that may help in considering this drug for various inflammatory human disorders including MS as primary or adjunct therapy.



Conclusion

Rather to my surprise, Cinnamon does seem to have a noticeable cognitive effect in the type of autism I am interested in.  It appears, rather like the statin, to promote improved adaptive behavior by reducing inhibition and increasing spontaneous thought and actual decision making.

Of all the many possible modes of action, I am thinking that inhibition of NF-κB and/ or RAS inhibition are most likely since the effect is very similar to that produced by the statin.

I will certainly continue with cinnamon and when my size 000 gelatin capsules arrive, I will look at different doses.  Currently the dose is about 2.5 ml split three times a day, using size 00 gelatin capsules.