UA-45667900-1
Showing posts with label Oxytocin. Show all posts
Showing posts with label Oxytocin. Show all posts

Sunday 3 January 2016

Vitamin A (and ATRA) Upregulate Oxytocin via CD38


 A familiar site to Maja, the confluence of the Sava and the Danube


Today’s post is to document an interesting discovery by Maja, one reader of this blog.  She is just ahead of some Korean researchers, who very recently published a paper in Experimental Neurobiology on the same subject.

Maja noticed that giving a small dose of fish oil produced the same benefits as those often claimed for Oxytocin; she then did some investigation and noted that an enzyme called CD38 upregulates oxytocin in the brain.  The level of CD38 is affected by inflammatory cytokines and certain vitamins.  In particular, all-trans retinoic acid (ATRA) increases CD38. All-trans retinoic acid (ATRA) is made in the body from vitamin A.  ATRA is also called vitamin A acid.

Maja suggested this paper:-



Deficits in social behavior in mice lacking the CD38 gene have been attributed to impaired secretion of oxytocin. In humans, similar deficits in social behavior are associated with autistic spectrum disorder (ASD), for which genetic variants of CD38 have been pinpointed as provisional risk factors. We sought to explore, in an in vitro model, the feasibility of the theory that restoring the level of CD38 in ASD patients could be of potential clinical benefit. CD38 transcription is highly sensitive to several cytokines and vitamins. One of these, all-trans retinoic acid (ATRA), a known inducer of CD38, was added during cell culture and tested on a large sample of N = 120 lymphoblastoid cell (LBC) lines from ASD patients and their parents. Analysis of CD38 mRNA levels shows that ATRA has an upmodulatory potential on LBC derived from ASD patients as well as from their parents. The next crucial issue addressed in our study was the relationship between levels of CD38 expression and psychological parameters. The results obtained indicate a positive correlation between CD38 expression levels and patient scores on the Vineland Adaptive Behavior Scale. In addition, analysis of the role of genetic polymorphisms in the dynamics of the molecule revealed that the genotype of a single-nucleotide polymorphism (rs6449182; C>G variation) in the CpG island of intron 1, harboring the retinoic-acid response element, exerts differential roles in CD38 expression in ASD and in parental LBC. In conclusion, our results provide an empirical basis for the development of a pharmacological ASD treatment strategy based on retinoids.


In December some Korean researchers also suggested that ATRA might be used therapeutically to increase Oxytocin.  Maja discovered that vitamin A can also be used, which makes sense.

The Korean paper reviews the existing literature and clinical trials on oxytocin in autism, and I suggest those interested should read it.

Some people clearly benefit from oxytocin, some do not and some suffer side effects.

In those that benefit from oxytocin, it might be simpler to upregulate the body’s own oxytocin via ATRA, or vitamin A.


Is this proof?

Of course there are other explanations possible for what Maja has noted.  She was using fish oil as a source of vitamin A, so it could be related to the other constituents.

However, I for one think it is highly plausible and does fit nicely with the ideas put forward by the Korean researchers and the earlier paper.


Vitamin A for all?

We know that autism genes include many for oxytocin, oxytocin receptors and indeed CD38, so anyone with those genes dysfunctional might benefit.

However, as we saw with biotin, more people may be affected to a lesser degree.

CD38 affects oxytocin secretion in the brain and CD38 is affected by inflammatory cytokines, so at times of elevated cytokine expression, CD38 and oxytocin might be reduced in people with no relevant genetic dysfunction.

You can have too much vitamin A, this is called Hypervitaminosis A.  You cannot suffer this condition by eating fruit and vegetables, but you can by eating too much preformed vitamin A from foods (such as fish or animal liver), supplements, or prescription medications; it can be prevented by ingesting no more than the recommended daily amount.

High intake of provitamin carotenoids (such as beta carotene) from vegetables and fruits does not cause Hypervitaminosis A, as conversion from carotenoids to the active form of vitamin A is regulated by the body to maintain an optimum level of the vitamin. Carotenoids themselves cannot produce toxicity.

So, too much cod liver oil can be bad for you, but you can eat carrots like Bugs Bunny and do no harm.  If you really overdo it, your skin may change colour to orange, something called carotenosis

You can buy vitamin A supplements as the preformed vitamin or as beta carotene.


Too much of a good thing?

In times gone by, children used to be given a tablespoon of cod liver oil daily, as a good source of vitamin D and vitamin A.  These days that amount of both vitamins would be seen as excessive.  Excess of both vitamins is bad for you, but easy to achieve, by accident, while trying to do a good thing.


Maja’s Dose

Maja achieved her positive results with a modest dose of fish oil (using 40% of one capsule) giving 3-4000 IU of vitamin A.

This is actually quite a high dose of vitamin A, if you look at the maximum safe dose.

I think many people are giving kids with autism much larger doses of fish oil and thus far too much vitamin A and D.  This has been raised as an issue by Seth, another reader of this blog.


CD38

CD38 has many other functions other than regulating oxytocin. In people who have an oxytocin dysfunction due to an upstrean CD38 dysfunction, correcting the lack of CD38 might be particularly beneficial.   

CD38 is used as a prognostic biomarker for leukemia.  This is a complex area of science.  In essence, it is an accepted fact that increased CD38 expression is associated with favorable prognosis in adult acute leukemia.

Leukemia is associated with Down Syndrome. 

Not surprisingly, both vitamin A and ATRA can be beneficial in treating leukemia.
ATRA (All Trans-Retinoic Acid) for acute myeloid leukaemia (AML)


CD38 expression is apparently easy to measure.

Perhaps in those numerous oxytocin trials for autism, they might want to bother measuring CD38?


The Recent Korean Paper


Here is what the Koreans have to say about Oxytocin:-




CD38 is a transmembrane antigen that has been studied as a negative prognostic marker for chronic lymphocytic leukemia [72]. CD38 participates in the oxytocin secretion in the brain and affects maternal nurturing and social behavior [73]. Plasma levels of oxytocin are strongly reduced in CD38 knockout mice (CD38-/-mice) and subcutaneous oxytocin injection or lentiviralvector-mediated delivery of human CD38 into the hypothalamus rescued social memory and maternal care in these mice [73].

CD38 transcription is highly sensitive to cytokines and vitamins, including all-trans retinoic acid (ATRA), a known inducer of CD38 [75]. In a study on lymphoblastoid cell lines in patients with ASD and their parents, ATRA exhibited an upmodulatory potential on CD38 mRNA [75]. Although there have been almost no follow up studies on ATRA and ASD treatment, there is a possibility that substances affecting CD38 expression, such as ATRA, may be potential therapeutic candidates














Friday 16 October 2015

It’s not Autism, it’s Sotos Syndrome – and more about GABA therapies




I recently returned from a 25 year class reunion; of the 200 or so class members about 120 turned up. Of the 200 we know that at least 5 have a son with autism and at least one has a nephew with autism.  So I had my first ever “autism lunch” discussing all those tricky issues we are left to deal with.

What was immediately apparent was how different each child’s “autism” was and that none of them were the autism-lite variants that are now being so widely diagnosed in older children. or even adults .  Of the six, two are non-verbal, one is institutionalized, yet one talks a lot.  Three sets of parents are big ABA fans and one child did not respond to ABA.

You may be wondering about that high incidence of autism.  This was not a gathering of science boffins or mathematicians; this was at a business school.  One thing is obvious, you can correlate some autism incidence with educational level.  You can connect all sorts of measures of IQ to autism, from having a math prodigy in the family, to having professors at Ivy league type Universities, particularly in Mathematics.  It does appear to be true that the so-called clever genes are also associated with some types of autism.

I presume that if my science-only university organized such events the incidence of autism would be even higher.

On the way back home we met an acquaintance at the airport, who was telling us all about his son with Sotos Syndrome.  "It is not autism", we were informed, but then I am not quite sure what is.  When you look it up, many of the symptoms look just like autism.  In fact, it is a single gene dysfunction that leads to gigantism and various elements of autism.

This brings me to the painting above of Peter the Wild Boy; it is not me I should point out.  The above Peter was a German boy who came to live in England in the 18th Century; he was non-verbal and is now thought to have had Pitt Hopkins Syndrome.  Like Sotos, this is another very rare single gene disorder.

We have already come across Rett Syndrome, which for some reason is treated as autism.

Fragile X is thought of as a syndrome where autism can be comorbid.

Timothy Syndrome is fortunately extremely rare, but I have already drawn on it in my own research into autism.

There are also autism related disorders involving multiple genes.

Prader–Willi syndrome  is a rare genetic disorder in which seven genes (or some subset thereof) on chromosome 15 (q 11–13) are deleted or unexpressed (chromosome 15q partial deletion) on the paternal chromosome.  If the maternally derived genetic material from the same region is affected instead, the sister Angelman Syndrome is the result.

The most frequent disorder caused by known multiple gene overexpression is Down Syndrome.  We saw in earlier post that DS is caused by the presence of all or part of a third copy of chromosome 21.  This results in over-expression of some 300 genes.


Why So Many Syndromes

Even before the days of genetic testing, these syndromes had been identified.  How could that be?  Each syndrome is marked by clear physical differences.

These physical differences where used to identify those affected.

Within autism too, sometimes there are physical differences.  Big heads, small heads, slim stature or heavy stature, advanced bone age or retarded bone age.


So many syndromes , but no therapies

Many of the rare syndromes have their own foundations funding research, mainly on the basis that if there is a known genetic dysfunction there should be matching therapy somewhere.

As of today, there are no approved therapies for any of these syndromes.


The Futility of Genetic Research?

A great deal of autism research funding goes into looking for target genes.  The idea goes that once you know which gene is the problem you can work out how to correct it.  There are numerous scientific journal dedicated to this approach.

Since no progress has been made in treating known genetic conditions leading to “autism”, is all this research effort well directed?  Some clever researchers think it is not.

All I can do is make my observations from the side lines.

What do Down Syndrome, Autism and Pitt Hopkins Syndrome all have in common?

In at least some of those affected, they have the identical excitatory-inhibitory imbalance of GABA, that can be corrected by Bumetanide.

If you did whole exome genetic testing on the responders with these three conditions you would not find a common genetic dysfunction; and yet they respond to the same therapy.

I am actually all for continued genetic research, but those involved have got to understand its limitations, as well as its potential.



More on GABA

This post returns to the theme of the dysfunctional GABA neurotransmitter because the research indicates it is present in numerous of the above-mentioned conditions. 



·        Autism
·        Fragile X
·        Rett Syndrome
·        Down Syndrome
·        Neurofibromatosis type 1
·        Tourette syndrome
·        Schizophrenia
·        Tuberous sclerosis complex (TSC)
·        Prader-Willi syndrome
·        Angelman Syndrome


Based on feedback to me, we should add Pitt Hopkins Syndrome to the above list.

The GABA dysfunction is not the same in all the above conditions, but at least in some people, Bumetanide is effective in cases of autism, Down Syndrome and Pitt Hopkins Syndrome.  I suspect that since it works in mice with Fragile-X , it will work in at least some humans.

GABAA has already been covered in some depth in this blog, but I am always on the lookout for more on this subject, since interventions are highly effective.  It is complicated, but for those of you using Bumetanide, Low Dose Clonazepam, Oxytocin and some even Diamox, the paper below will be of interest.



Regular readers will know that in autism high levels of chloride Cl inside the neuron have been shown to make GABA excitatory rather than inhibitory.  This leads to neurons firing too frequently;  this results in effects ranging from anxiety to seizures and with reduced cognitive functioning.  Therapies revolve around reducing chloride levels, this can be done by restricting the flow in ,or by increasing the flow out.  The Na+/K+/Cl cotransporter NKCC1  imports Cl into the neuron.  By blocking this transporter using Bumetanide you can achieve lower Cl within the neuron, but with this drug you also affect NKCC2, an isoform present in the kidney, which is why Bumetanide is a diuretic.  Some experimental drugs are being tested that block NKCC1 without affecting NKCC2 and better cross the blood brain barrier. 

The interesting new approach is to restore Cl balance by increasing KCC2 expression at the plasma membrane.  This means increasing the number of transporters that carry  Cl  out of the neurons.



In the Modulation of GABAergic transmission paper there is no mention of acetazolamide (Diamox) which I suggested in my posts could also reduce Cl, but via the AE3 exchanger.  This would explain why Diamox can reduce seizures in some people.

The paper does mention oxytocin and it does occur to me that babies born via Cesarean/Caesarean section will completely miss this surge of the oxytocin hormone.  This oxytocin surge is suggested to be key to the GABA switch, which should occur soon after birth when GABA switches from excitatory to inhibitory.  In much autism this switch never takes place.

That would suggest that perhaps all babies born via Caesarean section should perhaps receive an artificial dose of oxytocin at birth.  This might then reduce the incidence of GABA dysfunctions in later life, which would include autism and some epilepsy.

Indeed, children born by Caesarean section (CS) are 20% more likely to develop autism.


Conclusions and Relevance  This study confirms previous findings that children born by CS are approximately 20% more likely to be diagnosed as having ASD. However, the association did not persist when using sibling controls, implying that this association is due to familial confounding by genetic and/or environmental factors.

So as not to repeat the vaccine/autism scare, the researchers do not say that Caesarean section leads to more autism, rather that the kinds of people who are born by Caesarean section already had an elevated risk of autism.  This is based on analysing sibling pairs, but I do not entirely buy into that argument.  They do not want to scare people from having a procedure that can be life-saving for mother and baby.

If you look at it rationally, you can see that the oxytocin surge at birth is there for an evolutionary reason.  It is very easy to recreate it with synthetic oxytocin.

Another interesting point is in the conflict of interest statement:-


Laura Cancedda is on the Provisional Application: US 61/919,195, 2013. Modulators of Intracellular Chloride Concentration For Treating An Intellectual Disability


Regular readers will note that in this blog we have known for some time that modifying GABAA leads to improved cognitive function.  I even suggested to Ben-Ari that IQ should be measured in their autism trials for Bumetanide.  IQ is much less subjective than measures of autism.


Conclusion

My conclusion is that while genetic testing has its place, it is more productive to look at identifying and treating the downstream dysfunctions that are shared by many individual genetic dysfunctions.

By focusing on individual genes there is a big risk of just giving up, so if you have Pitt Hopkins Syndrome, like Peter the Wild Boy, it is a single gene cause of “autism” and there is no known therapy.  Well it seems that it shares downstream consequences with many other types of autism, so it is treatable after all.

I also think more people need to consider that cognitive dysfunction (Intellectual Disability/MR) may indeed be treatable, and not just via GABA; so good luck to Laura Cancedda.







Friday 25 September 2015

OPN-300 Oxytocin and Autism



This post is about nasal spray drugs and Oxytocin.

Monty, aged 12 with ASD, uses a conventional anti-histamine nasal spray and I do sometimes wonder just how much of the drug reaches its target.  

With inhalers for asthma this is a well known problem and often even adults do not use them correctly; they are proven to work much better when they are fitted with a spacer chamber, that way the drug ends up in your lungs and not stuck to the inside of your mouth.






Many adults with asthma and COPD nowadays use spacers.

So my interest was drawn to a company called Optinose that is developing drugs for nasal delivery using a novel dispenser.  I was particularly surprised that in its small drug pipeline is an oxytocin spray for autism.

If you look on the US National Institute of Health website listing clinical trials of oxytocin and autism, you will find that thirty, yes three zero, studies are listed.


According to their website, Optinose intend to be the first to bring a product to the market approved for autism.











On the clinical trials website you may notice that other trials use an existing drug called Syntocinon that is a synthetic form of Oxytocin already approved for other purposes.






I did mention in an earlier post that the US rights to Syntocinon were sold to a company hoping to develop a therapy for Schizophrenia and Autism.


Retrophin Signs U.S. License Agreement for Syntocinon™ Nasal Spray (Oxytocin)


In Europe Syntocinon is available in most countries as a prescription drug.


The Optinose idea is that their dispenser can much more reliably dispense the correct amount of drug and have it reach the membrane deep inside the nose.  None gets in the mouth and less should get stuck at the entrance to the nose.

Previous trials of Oxytocin have yielded very mixed results.  Perhaps part of this is due to the nature of the spray pump being used?  It is certainly plausible.


The Optinose Spray

The Optinose spray is inserted in one nostril and your mouth.  You blow out through mouth, sealing the nasal cavity in the process, and the spray is forced out into your nose.  This should ensure it goes deep inside to the nasal membrane, where the oxytocin can cross directly into the blood stream.





Click on the link below and then click to play the short video.



As the video points out, this kind of drug delivery can “enable new and improved brain treatments”


They are talking about direct nose-to-brain drug delivery, bypassing the blood brain barrier (BBB).  This is not fantasy and is already quite well studied.

Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting.

Coming back to Oxytocin ...

Not only is Oxytocin a well-known hormone affecting social behavior, but it also plays a role in switching the neurotransmitter GABA between excitatory and inhibitory.


Oxytocin and GABAA

Oxytocin has a role at birth in the GABA “switch”, but it also has an ongoing role via binding to a particular subunit of GABAA receptors.



We report that the oxytocin-mediated neuroprotective γ-aminobutyric acid (GABA) excitatory-inhibitory shift during delivery is abolished in the valproate and fragile X rodent models of autism. During delivery and subsequently, hippocampal neurons in these models have elevated intracellular chloride levels, increased excitatory GABA, enhanced glutamatergic activity, and elevated gamma oscillations. Maternal pretreatment with bumetanide restored in offspring control electrophysiological and behavioral phenotypes. Conversely, blocking oxytocin signaling in naïve mothers produced offspring having electrophysiological and behavioral autistic-like features. Our results suggest a chronic deficient chloride regulation in these rodent models of autism and stress the importance of oxytocin-mediated GABAergic inhibition during the delivery process. Our data validate the amelioration observed with bumetanide and oxytocin and point to common pathways in a drug-induced and a genetic rodent model of autism.

Further evidence as to the precise effect of Oxytocin on GABA receptors was found by chance.  It was found that having dosed rats with Oxytocin, they did not get drunk when fed alcohol.





Specifically, oxytocin (1 µg i.c.v.) given before ethanol (1.5 g/kg i.p.) attenuated the sedation and ataxia induced by ethanol in the open-field locomotor test, wire-hanging test, and righting-reflex test in male rats.

Vasopressin, which is a nonapeptide with substantial structural similarity to oxytocin, did not alter ethanol effects at δ-GABAARs. This pattern of results confirms the specificity of the interaction between oxytocin and ethanol at δ-GABAARs

The profound and direct interaction observed between oxytocin and ethanol at the behavioral and cellular level may have relevance for the development of novel therapeutics for alcohol intoxication and dependence.



Is Oxytocin a useful Autism Therapy?

Given the large number of trials and the number of people already taking Oxytocin, some people clearly believe in the therapeutic potential of Oxytocin.

What is clear is that there a numerous modes of action for Oxytocin, some of which relate to GABAA receptors.

So why is it taking so very long for these trials to come to any usable conclusion? Well just looking at the long list of researchers, it includes some of those who have spent twenty years "researching" autism and producing absolutely nothing tangible, just papers concluding more research is needed or even producing, supposedly therapeutic, cartoons (Cambridge University).

We have the usual problem that numerous different dysfunctions lie at the root of “autism” and so only a moderate proportion, at best, would be expected to benefit from any therapy.

In the case of nasal sprays we have the question of how much actually gets delivered to the right place deep inside the nose where there is a very thin membrane that allows the Oxytocin to cross over into the blood.


OPN-300 Clinical Trials

The Phase 1 trial for OPN-300 was actually on healthy adults, and looked at things like dosing.  Low doses were more effective than high doses.  Next follows the trial on people with autism.  




Despite the promise of intranasal oxytocin (OT) for modulating social behavior, recent work has provided mixed results. This may relate to suboptimal drug deposition achieved with conventional nasal sprays, inter-individual differences in nasal physiology and a poor understanding of how intranasal OT is delivered to the brain in humans. Delivering OT using a novel ‘Breath Powered’ nasal device previously shown to enhance deposition in intranasal sites targeted for nose-to-brain transport, we evaluated dose-dependent effects on social cognition, compared response with intravenous (IV) administration of OT, and assessed nasal cavity dimensions using acoustic rhinometry. We adopted a randomized, double-blind, double-dummy, crossover design, with 16 healthy male adults completing four single-dose treatments (intranasal 8IU (international units) or 24IU OT, 1IU OT IV and placebo). The primary outcome was social cognition measured by emotional ratings of facial images. Secondary outcomes included the pharmacokinetics of OT, vasopressin and cortisol in blood and the association between nasal cavity dimensions and emotional ratings. Despite the fact that all the treatments produced similar plasma OT increases compared with placebo, there was a main effect of treatment on anger ratings of emotionally ambiguous faces. Pairwise comparisons revealed decreased ratings after 8IU OT in comparison to both placebo and 24IU OT. In addition, there was an inverse relationship between nasal valve dimensions and anger ratings of ambiguous faces after 8-IU OT treatment. These findings provide support for a direct nose-to-brain effect, independent of blood absorption, of low-dose OT delivered from a Breath Powered device.


Importantly, the current findings are the first to suggest that a low dose of OT is more effective than a higher dose in modulating social cognition

Converging biological and behavioral evidence suggests that lower OT doses may be more efficacious than higher doses. For instance, compared with higher doses, lower doses increased peripheral levels of OT in saliva,65 attenuated cortisol stress responses66 and increased eye gaze in patients with Fragile X syndrome.67 In animals, a low dose of OT administered shortly after birth increased partner preference later in life, whereas higher doses did not.68 Similarly, lower doses have been associated with stronger increases in social recognition compared with higher doses.69, 70 The dose–response data reported here provide useful preliminary evidence concerning the optimal dose for social cognition modulation; however, extrapolation from healthy individuals to patients must be with caution. Patients with social-cognitive deficits may respond differently than healthy volunteers, so future studies should explore effects in patient populations to determine the generalizability of these findings to target illnesses. Future work should also further investigate the role of different delivery devices, administration routes, dosages and social cognition tasks on the efficacy of intranasal OT, ideally using larger sample sizes given the limitation of a relatively small sample size in the present study.
In addition, this study provides preliminary evidence that a lower dose (8IU) may offer greater efficacy than a higher dose (24IU) when administered with the Breath Powered device.

There are a number of interpretations regarding why no effect was observed at the 24IU OPN-OT dose, in contrast to the 8IU dose. For example, a higher OT dose is more likely to influence the balance of AVP/OT, as evidenced by the decrease in AVP concentration after 24IU OPN-OT (but not 8IU OPN-OT) observed in the present study, which can modulate social behavior.



OptiNose reports positive results from Phase 1 trial of intranasal oxytocin for autism

Jul 15 2015

OptiNose has announced that a study comparing OPN-300 intranasal oxytocin to intravenous oxytocin for the treatment of autism showed the achievement of similar blood levels but significantly greater social-cognitive effects after intranasal administration. The results were published online July 14, 2015 in Translational Psychiatry.
The randomized, placebo-controlled, double-blind, double-dummy, 4-arm cross-over study involved 16 healthy volunteers who received either intravenous oxytocin or two doses of OPN-300 delivered using OptiNose’s bi-directional breath powered intranasal delivery device. Social-cognitive effects were measured by emotional rating of facial images.
Researcher Ole A. Andreassen of the University of Oslo said, “The OptiNose technology significantly changes the way drug is delivered high up in the nose, and may be the drug delivery solution we’ve been looking for. If we can improve social cognition in healthy people with OPN-300 low-dose oxytocin, then we may be able to address a core symptom suffered by millions of patients worldwide with autism.”
OptiNose Chief Scientific Officer Per Djupesland commented, “Although animal data has been encouraging, many would argue that medication transport from the nasal cavity directly to the brain has not been previously proven in humans. Today’s results are quite promising and bolster our belief that we can enable and enhance the treatment of common brain disorders with OptiNose delivery technology.”
The company says that it is initiating a Phase 2 trial of OPN-300 in autism patients in Norway. OptiNose is also developing intranasal fluticasone for chronic sinusitis and recently reported positive results from a Phase 3 trial of that product.
Read the OptiNose press release.
Read the Translational Psychiatry article.




Conclusion

Some parents already use the Syntocinon version of oxytocin for autism; some tried it in one of the earlier clinical trials and found it did not help.  There is nothing surprising in that. 

The people at OptiNose seem to be a bit more motivated than some of the other oxytocin researchers, in relaxed leafy universities, to actually get to the finishing line.  They are initiating Phase 2 trials of OPN-300 in autism patients in Norway.  Some of the other studies have been going on for several years and are still not finished.

Hopefully we will soon have some data on what percentage of people with “autism” respond to OPN-300 and then we could compare that to the response to Syntocinon.

As we have seen several times before, it seems that smaller doses of oxytocin are more effective than larger doses.  Larger doses seem to change (reduce) vasopressin levels, which will also affect social behavior.

One you start changing the level of one hormone, like oxytocin, you are very likely to affect others.  There are many interrelations and feedback loops.  

Oxytocin may well be part of the solution for some people with autism, but I expect in others it may make them worse.  Hopefully in the later trial(s) they will try and indentify biomarkers for the responder group.