UA-45667900-1
Showing posts with label trkB. Show all posts
Showing posts with label trkB. Show all posts

Thursday 9 June 2016

Longitude, Latitude & Epilepsy in Autism




It is not always easy to decide which subjects to study, never mind if you have autism.

For Monty, aged 12 with autism, it has been me choosing what he studies.  At the beginning it was rather overwhelming for his 1:1 assistant, because there was so much to learn and never enough time.  It takes years to learn very simple things that typical kids just pick up naturally.

One big change after three and half years of Polypill use, is that Monty follows the standard academic curriculum, albeit for kids two years his junior.

An excellent but not very user friendly curriculum/skill list is in a book called ABLLS (assessment of basic language and learning skills).  It is both a curriculum and an assessment tool.  It covers all the very basic skills that kids need as a foundation for future learning.

We were working from this list of simple skills for four years, until the age of eight.  These are skills most kids effortlessly pick up in the first three or four years of life.

After you have mastered those simple skills what do you teach next to someone with classic autism?

I did my research and concluded the generally accepted answer is “not much”.

One phrase I still recall was a mother writing “our kids don’t need to learn longitude and latitude”, because this is going to go way over their heads.

It seems that for kids entirely non-verbal at three, about 10% have some maturational dysfunction that self-corrects by six, leaving just minor tics or perhaps mild "quirky" autism. Most of the remaining 90% end up "graduating" high school with an academic level of a four to seven year old.  A small number do better.  

A few years after ABLLS and Monty has mastered X,Y coordinates, even using negative numbers and identifying objects using Northwest, Southeast etc.

Regular readers will be aware that Monty’s recent academic development did not happen spontaneously, nor through ABA, it came from pharmacotherapy (drugs) and is reversible (hopefully not entirely).


Burden of proof

In spite of all this change it would be hard to prove what has caused it. Fortunately I do not need to.

Monty is still autistic, just less so and is now educable. That is a really big deal to me, but not to others. 

If you could convert 100% of kids with autism into outgoing, talkative, social, intelligent, typical kids then people would take note.  No therapy will ever deliver this. Just to confuse the issue, 10% will indeed "recover" without any intervention at all, which then is used to justify all kinds of interventions that those people used.

Have I measured Monty’s IQ?  No I have not.  A lady from California asked me why not, because over there they have excellent autism services, even assisted employment and sheltered housing but it is rationed based on things including IQ. 

One doctor reader of this blog suggested that some of the drug interventions in this blog will also reduce the development of seizures and therefore reduce the rate of premature death in autism; “surely we should tell people about this”.  I had a sense of déjà vu.

It is clear that in treating the excitatory/inhibitory imbalance that underlies much autism and also treating other channelopathies, you should also be avoiding some of the neuronal hyper-excitability that is epilepsy.

So treating autism should reduce death from seizures that reduce life expectancy in severe autism to just 40 years old.

This is all true and a year or so back I did suggest this to the Bumetanide researchers.  There was little interest and some skepticism. 

In fact there is a great deal of epilepsy research and some does indeed overlap with autism research.  One key area is Cation Chloride Cotransporters (CCCs), where the same type of immature neurons found in autism are found in epilepsy. Another is elevated BDNF (brain-derived neurotropic factor); in epilepsy, seizures trigger an increase in BDNF which then reduces expression of KCC2 which then shifts neurons further towards immature (high intra-cellular chloride) worsening the excitatory/inhibitory imbalance and making the next seizure more likely.  A clever idea we can borrow from the under-utilized epilepsy research is to consider blocking BDNF, or trkB, as a means of increasing KCC2 expression.  This could be a useful adjunct therapy to bumetanide, which blocks NKCC1. We want less NKCC1 but more KCC2, to give lower levels of chloride inside the cells and then neurons can fire when they are supposed to.


It takes decades for research findings, like those in the above paragraph, to be translated across into therapies.

If you, or particularly a researcher, make a statement that is controversial and not backed by a big stack of evidence (based on human trials, not mouse trials) nobody is going to believe you.  Worse still, the next time you make a claim, they will be even less likely to believe you.

So better under-promise but over deliver.  Start finally treating some autism and then watch in the next thirty years that epilepsy incidence falls and along with it SUDEP (Sudden Unexpected Death in Epilepsy).  Then you can say “I told you so, it was those Cation Chloride Cotransporter after all ”.

In spite of all the “evidence” that some autism is treatable, cognitive dysfunction is reversible, the world has not taken any notice.  Where is the undisputed concrete proof?  I just have to think “longitude and latitude”, that’s my proof.

So in reality while avoiding epilepsy should be a big deal for the parents, it is not for anyone else.  The current wisdom is keep your fingers crossed and hope that you are not in the one third that will develop epilepsy around puberty.  In some people this triggers an epigenetic change, opening the way to many future seizures.  For those who are interested:-

          Epigenetics and Epilepsy

If you follow 100 kids with autism on bumetanide for 10 years and found 5 developed seizures that would not be regarded as proof.

Based on my reading of the literature, you would expect 30+% of people with classic autism to develop epilepsy.  So if they had just 5 cases, I would see that as vindication, but it would not be seen as conclusive proof by others, just another paper to file and forget.

So the idea of prophylactic drug treatment to avoid the onset of epilepsy in autism is unlikely to catch on and is easy to rubbish.

Just like prophylactic use of drugs to avoid dementia, avoid type 2 diabetes or avoid the nasty side effects of type 1 diabetes, they will not enter the mainstream.


Conclusion

Setting low standards and targets will guarantee poor outcomes.  Aim to learn longitude and latitude, but it might be easier with a daily dose of bumetanide.

Some epilepsy is avoidable, some may not be, but if treating autism can also reduce the chance of epilepsy and SUDEP do you really need to wait for absolute evidence?

It is currently a matter of geography and google competence who is going to access effective pharmacotherapy.  For a change it is the poorer countries who have the advantage, since they have less rigid control over access to prescription medication.

I was just reading that the excellent New England Center for Children (NECC) charges up to $300,000 a year to educate kids with autism.  It is a great school and we employed a former teacher from there a few years ago, to help with our home program.  With something like 0.3% of all kids having serious autism, there needs to be a less expensive solution available to all.  

Spending $300,000 at NECC will almost definitely have a positive impact on one severely autistic child for one year.  Alternatively, for the same money, you could treat 480 kids with strict definition autism with my Polypill for one year.  It looks like around a half would respond very well.  Ideally you would spend $300,620 and have both the NECC and the Polypill; this is pretty much what was my target, but without leaving home.