UA-45667900-1

Monday 6 October 2014

Yale, Autism and Morphology


  

In a recent post I introduced a new term – morphology.  Some scientific jargon serves to make things more confusing for the lay reader, but this really is a useful term to understand autism.

Morphology, in biology, the study of the size, shape, and structure of animals, plants, and microorganisms and of the relationships of the parts comprising them.

Today we are talking about morphology as it relates to the growth of the human body in autism.

In earlier posts relating to hormones and growth factors (endocrinology) I made my own observations about Monty, aged 11 with ASD.  I commented how he fell from the 80% percentile in height, aged 2, to the 20th percentile, where he is now.  I also noted how he went from very muscular to your average “floppy” toddler.

I did discuss this with a pediatric endocrinologist and asked what is the point of collecting this height and weight data for children, if nothing is done with it.  I did tell her all about the emerging use of the growth factor IGF-1 in treating autism and also the hypothesis that people with autism have low thyroid hormone T3 in the brain.
I concluded that endocrinologists do not know anything about autism, but I did learn all about bone age

Endocrinologists often use X rays of the hand to look for advanced or delayed bone age.  They look at the gaps in between the small bones to assess the degree of maturation.  The bigger the gap, the less mature the bones.  They have a big book of X-rays and they just flip through the pages until they find one like your X ray.  So if you are 11 years old, with bone structure of a 9 year old, then you would have delayed bone age.  In practical terms, this means you are likely to keep growing for longer than the average child.


Autism Research

As we have seen already, much data in autism is of dubious quality.  Studies are contradictory.  Much of this is due to mixing apples with kiwis and even pineapples. You cannot usefully compare data on severely autistic people with those ever so mildly affected, but still “autistic” by DSM. Even separating early onset and regressive autism is rare in studies.  There is no agreement as to what regressive really means and some scientists even think regression is just a development plateau – I guess they never see actual patients.

So I was pleased to come across some interesting research about autism morphology that seems credible.  Of all places, it was in a student publication from Yale.  On Facebook, Monty’s older brother keeps getting confused with his namesake, who is one of the reporters on the Yale student newspaper.    Not only does Yale have a daily student newspaper, but it also has its own Yale Scientific Magazine.

They must have a lot of free time over at Yale.

This was my first experience of student journalism at Yale.  I was impressed.





  
One identified phenotype associated with autism is abnormally large Total Cerebral Volume (TCV) and, correspondingly, Head Circumference (HC) – collectively called macrocephaly. Researchers at Yale University’s Child Study Center have undertaken studies in the connectivity of growth and neural development to assess risk and predict developmental phenotype of young boys through growth measurement. A group of 184 boys aged birth to 24 months, composed of 55 typically developing controls, 64 with ASD, 34 with Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS), 13 with global developmental delays, and 18 with other developmental problems, was analyzed for head circumference, height, weight, and social, verbal and cognitive functioning. Boys with autism were significantly taller by 4.8 months, had a larger HC by 9.5 months, weighed more by 11.4 months, were in the top ten percent in size in infancy (correlated with lower adaptive functioning and social deficits), and showed accelerated HC growth in the first year of life.  


Here is actual study:-





Main Outcome Measures: Age-related changes in HC (head circumference),
height, and weight between birth and age 24 months; measures of social, verbal, and cognitive functioning at age 2 years.

Results: Compared with typically developing controls, boys with autism were significantly longer by age 4.8 months, had a larger HC by age 9.5 months, and weighed more by age 11.4 months (P=.05 for all). None of the other clinical groups showed a similar overgrowth pattern. Boys with autism who were in the top 10% of overall physical size in infancy exhibited greater severity of social deficits (P=.009) and lower adaptive functioning (P=.03).

Conclusions: Boys with autism experienced accelerated HC growth in the first year of life. However, this phenomenon reflected a generalized process affecting other morphologic features, including height and weight. The
study highlights the importance of studying factors that influence not only neuronal development but also skeletal growth in autism.
  
The Yale researcher is Polish, as was the lady who wrote about oxidative stress in the brain lowering D2 and hence thyroid hormone T3 in the brain.



Conclusion

This does take us back to the earlier posts on human growth factors.  It does seem that at least in one sub-type of autism there is “excess” growth in the first two years that is visible in terms of morphology.  This growth spurt then halts.

We already have data showing that in autism the brain itself also “over-grows” up to the age of about three.  We can now generalize that in this sub-type everything is likely affected by this over-growth.

Why does the growth spurt halt? It is not for lack of the growth factor IGF-1, many people with autism actually have elevated levels of this growth factor.  It is simple and inexpensive to check; I did it.

The problem may relate to something called Akt, also known as protein kinase B (PKB).

IGF-1 is one of the most potent natural activators of the AKT signaling pathway, a stimulator of cell growth and proliferation.

Very recent research has highlighted abnormalities in the IGF-1 – Akt pathway and also in similar pathways related to the brain’s own growth factor, BDNF.  (Note that mTOR is also implicated in autism)






So while IGF-1 may be an effective therapy for some people with autism (it is already used experimentally), most likely the real problem is slightly different and a better intervention might relate to AKT/PKB.

We will follow up on these and other protein kinase shortly.








Thursday 2 October 2014

Dendritic Spines in Autism – Why, and potentially how, to modify them





This blog is getting rather more detailed than I had anticipated.  

Today’s post is about something very complex, but not fully understood by anyone, so I will be somewhat superficial in my coverage.  Just click on the links to learn more detail.

There are two words that may be new to you – Morphology and Dendritic Spines.





Morphology, in biology, the study of the size, shape, and structure of animals, plants, and microorganisms and of the relationships of the parts comprising them.

For today it is really could be thought of as the variability in size and shape of something.


A dendritic spine is a small protrusion from a neuron's dendrite that typically receives input from a single synapse. Dendritic spines serve as a storage site for synaptic strength and help transmit electrical signals to the neuron's cell body. Most spines have a bulbous head (the spine head), and a thin neck that connects the head of the spine to the shaft of the dendrite. The dendrites of a single neuron can contain hundreds to thousands of spines. In addition to spines providing an anatomical substrate for memory storage and synaptic transmission, they may also serve to increase the number of possible contacts between neurons.







Now we combine our two new words and have a better summary of what this post is about:

Morphology of dendritic spines and mental disease

It turns out that shape of dendritic spines may play a key role in mental disease, including autism.

The shape is not fixed and live imaging studies have revealed that spines are remarkably dynamic, changing size and shape over timescales of seconds to minutes and of hours to days.

The shape is important as it impacts on function, malformations lead to dysfunctions that can affect a myriad of brain functions.

Here are some variations in the shape of dendritic spines.









In case you are thinking this is all rather abstract, let’s jump forward to a patent for a possible new treatment for autism.


Afraxis Patent

  
SUMMARY OF THE INVENTION

Described herein are p21 -activated kinase (PA ) inhibitors that alleviate, ameliorate, delay onset of, inhibit progression of, or reduce the severity of at least one of the symptoms associated with autism.

Claims  

WHAT IS CLAIMED IS:

1. A method for treating autism comprising administering to an individual in need thereof a therapeutically effective amount of a p21 -activated kinase (PAK) inhibitor.
2. The method of claim 1, wherein the PAK inhibitor modulates dendritic spine morphology or synaptic function.
3. The method of claim 2, wherein the PAK inhibitor modulates dendritic spine density.
4. The method of claim 2 or 3, wherein the PAK inhibitor modulates dendritic spine length.
5. The method of any of claims 1-4, wherein the PAK inhibitor modulates dendritic spine neck diameter.
6. The method of any one of claims 1-5, wherein the PAK inhibitor modulates dendritic spine head volume.
7. The method of any one of claims 1-6, wherein the PAK inhibitor modulates dendritic spine head diameter.
8. The method of claim 1 or 2, wherein the PAK inhibitor modulates the ratio of the number of mature dendritic spines to the number of immature dendritic spines.
9. The method of claim 1 or 2, wherein the PAK inhibitor modulates the ratio of the dendritic spine head diameter to dendritic spine length.
10. The method of claim 1 or 2, wherein the PAK inhibitor modulates synaptic function.

Etc …

Of course, plenty of patents turn out to be worthless nonsense, but I think the people at Afraxis do know what they are doing; time will tell.



Morphology or Number of Dendritic Spines?

The PAK1 researchers and others believe the morphology (shape) of the dendritic spines is the problem, others believe the problem is that there are just too many of them.

Research has shown that a particular gene (NrCAM) can increase/decrease the number of dendritic spines.

Studies at University of North Carolina showed that knocking out the NrCAM gene caused mice to exhibit the same sorts of social behaviors associated with autism in humans.

Researchers from Columbia University found an overabundance of the protein MTOR in mice bred to develop a rare form of autism. By using a drug to limit MTOR in mice, the Columbia researchers were able to decrease the number of dendritic spines and thus prune the overabundance of synaptic connections during adolescence. As a result, the social behaviors associated with autism were decreased. However, the drug (Rapamycin) used to limit MTOR can cause serious side effects.



Dr. Tang measured synapse density in a small section of tissue in each brain by counting the number of tiny spines that branch from these cortical neurons; each spine connects with another neuron via a synapse.
By late childhood, she found, spine density had dropped by about half in the control brains, but by only 16 percent in the brains from autism patients.
“It’s the first time that anyone has looked for, and seen, a lack of pruning during development of children with autism,” Dr. Sulzer said, “although lower numbers of synapses in some brain areas have been detected in brains from older patients and in mice with autistic-like behaviors.”
Using mouse models of autism, the researchers traced the pruning defect to a protein called mTOR. When mTOR is overactive, they found, brain cells lose much of their “self-eating” ability. And without this ability, the brains of the mice were pruned poorly and contained excess synapses. “While people usually think of learning as requiring formation of new synapses, “Dr. Sulzer says, “the removal of inappropriate synapses may be just as important.”

“What’s remarkable about the findings,” said Dr. Sulzer, “is that hundreds of genes have been linked to autism, but almost all of our human subjects had overactive mTOR and decreased autophagy, and all appear to have a lack of normal synaptic pruning. This says that many, perhaps the majority, of genes may converge onto this mTOR/autophagy pathway, the same way that many tributaries all lead into the Mississippi River. Overactive mTOR and reduced autophagy, by blocking normal synaptic pruning that may underlie learning appropriate behavior, may be a unifying feature of autism.”


Maness, a member of the UNC Neuroscience Center and the Carolina Institute for Developmental Disabilities, also said that there are likely many other proteins downstream of NrCAM that depend on the protein to maintain the proper amount of dendritic spines. Decreasing NrCAM could allow for an increase in the levels of some of these proteins, thus kick starting the creation of dendritic spines.

Knocking out the gene NrCAM increases the number of dendritic spines  
   
Gene linked to increased dendritic spines -- asignpost of autism

  
The view from Japan

RIKEN is a large research institute in Japan, with an annual budget of US$760 million.  Their Brain Science Institute (BSI) has a mission to produce innovative research and technology leading to scientific discoveries of the brain.  So RIKEN  BSI is like MIT just for the brain.

Science does tend to stratify by geography.  Just as we saw that NGF (Nerve Growth Factor) is the preserve of the Italians, when it comes to PAK it is the Japanese.
As you can see below the Japanese are firmly behind PAK1. 

Abstract
The serine/threonine kinase p21-activated kinase 1 (Pak1) modulates actin and microtubule dynamics. The neuronal functions of Pak1, despite its abundant expression in the brain, have not yet been fully delineated. Previously, we reported that Pak1 mediates initiation of dendrite formation. In the present study, the role of Pak1 in dendritogenesis, spine formation and maintenance was examined in detail. Overexpression of constitutively active-Pak1 in immature cortical neurons increased not only the number of the primary branching on apical dendrites but also the number of basal dendrites. In contrast, introduction of dominant negative-Pak caused a reduction in both of these morphological features. The length and the number of secondary apical branch points of dendrites were not significantly different in cultured neurons expressing these mutant forms, suggesting that Pak1 plays a role in dendritogenesis. Pak1 also plays a role in the formation and maintenance of spines, as evidenced by the altered spine morphology, resulting from overexpression of mutant forms of Pak1 in immature and mature hippocampal neurons. Thus, our results provide further evidence of the key role of Pak1 in the regulation of dendritogenesis, dendritic arborization, the spine formation, and maintenance.


SHANK3 and Dendritic Spines

Mutations of the SHANK3 gene are known to cause autism. 

Researchers in France found that SHANK3 mutations lead to modification of dendritic spine morphology and they identified the mechanism.



You may recall in my earlier posts on growth factors that it was this type of autism that responded to treatment with IGF1.



If you take a broader look at today’s subject you will see that various growth factors are indeed closely involved.  Here is some comment from Wayman Lab at Washington State University:- 


"Not surprisingly, abnormalities in dendritic arborization and spinogenesis, which diminish neuronal connectivity, are a common feature of the cognitively compromised aging brain as well as numerous forms of mental retardation including Fragile X, Fetal alcohol, Downs and Retts syndromes.

It is clear that changes in synaptic activity and neurotropic factors (e.g., BDNF) are effective initiators of the remodeling process and result in long-term alterations in dendrite and spine structure. What is not known are the molecular mechanisms that underlie how they stimulate dendritic spine formation."


Take your pick

So it looks like three different methods may exist to potentially modify dendritic spine numbers and morphology:-


1.   PAK1

Much work is ongoing regarding PAK1.  It is my current favorite.
For those interested here is a recent study using FRAX486 on Fragile X mice.


Abnormal dendritic spines are a common feature in FXS, idiopathic autism, and intellectual disability. Thus, this neuroanatomical abnormality may contribute to disease symptoms and severity. Here we take a hypothesis-driven, mechanism-based approach to the search for an effective therapy for FXS. We hypothesize that a treatment that rescues the dendritic spine defect may also ameliorate behavioral symptoms. Thus, we targeted a protein that regulates spines through modulation of actin cytoskeleton dynamics: p21-activated kinase (PAK). In a healthy brain, PAK and FMRP - the protein product of fmr1 - antagonize one another to regulate spine number and shape. Inhibition of PAK with a strategy utilizing mouse genetics reverses spine abnormalities as well as cognitive and behavioral symptoms in fmr1 KO mice, as we demonstrated in our previous publication. This discovery highlights PAK as a potential target for drug discovery research. In this thesis work, we build on this finding to test whether the small molecule FRAX486 - selected for its ability to inhibit PAK - can rescue behavioral, morphological, and physiological phenotypes in fmr1 KO mice. Our results demonstrate that seizures and behavioral abnormalities such as hyperactivity, repetitive movements, and habituation to a novel environment can all be rescued by FRAX486. Moreover, FRAX486 reverses spine phenotypes in adult mice, thereby supporting the hypothesis that a drug treatment which reverses the spine abnormalities can also treat neurological and behavioral symptoms.


2. mTOR

In spite of its noted toxicity, Rapamycin, is about to be tested in a clinical trial on a rare type of autism called TSC:-



Funnily enough the trial is taking place at the Kennedy Krieger Institute.

When commenting on the use of Bumetanide for autism, I recall the President of the Institute was quoted as saying:-


"So many things cure cancer in mice and rats, and so many things cure all kinds of things and then when we give them to humans they have adverse effects and don't fix the problems we thought they could fix," says Gary Goldstein, president and CEO of the Kennedy Krieger Institute, a Baltimore-based clinic and research center. "I wouldn't give it to my child, I can tell you that."

I found it a little odd that he gave the green light to trialing Rapamycin in children, given the long list of very nasty side effects.

  
3.  NrCAM 

Manesslab at UNC is clearly the centre for research into finding therapeutic agents surrounding NrCAM.  It looks like this is still some way from trials in humans.

“Too many spines and too many excitatory connections that are not pruned between early childhood and adolescence could be one of the chief problems underlying autism. Our goal is to understand the molecular mechanisms involved in pruning and find promising targets for therapeutic agents.”



Conclusion

It should not be surprising that multiple pathways may have the same therapeutic benefit on dendritic spines.  We only need one to be safe and effective.

The link back to human growth factors is interesting since we know these are disturbed in autism and other mental conditions, but the dysfunction varies by sub-type.  In fact, Nerve Growth Factor (NGF) would likely be an effective therapy for dementia and perhaps even Retts syndrome.

In the next post we will learn some more interesting things about growth factor anomalies in autism.  It turns out that something called Akt, also known as protein kinase B (PKB), may be behind them all. A related protein called protein kinase C (PKC), is known to affect the morphology of dendritic spines. There is also protein kinase A (PKA).  Both PKA and PKB have been shown to have reduced activity in regressive autism, this will also be covered later. 






Monday 29 September 2014

Mounting Evidence Regarding Autism, Neurofibromatosis and PAK1

When I google “autism” and “PAK1”, I keep seeing my own posts come up.  This is beginning to be a regular occurrence, when I research an idea.  Google “verapamil autism”, “clonazepam autism” “bumetanide autism” and even “NAC autism”, the same thing happens.

So it is nice to have some further studies that also show the possible importance of PAK1 in treating autism.  This time it is from the University of Indiana and more precisely, Anantha Shekhar, Professor of Psychiatry at the School of Medicine.

We have the study’s abstract and the more people-friendly press release.


Abstract

Children with neurofibromatosis type 1 (NF1) are increasingly recognized as having a high prevalence of social difficulties and autism spectrum disorders (ASDs). We demonstrated a selective social learning deficit in mice with deletion of a single Nf1 allele (Nf1+/−), along with greater activation of the mitogen-activated protein kinase pathway in neurons from the amygdala and frontal cortex, structures that are relevant to social behaviors. The Nf1+/− mice showed aberrant amygdala glutamate and GABA neurotransmission, deficits in long-term potentiation and specific disruptions in the expression of two proteins that are associated with glutamate and GABA neurotransmission: a disintegrin and metalloprotease domain 22 (Adam22) and heat shock protein 70 (Hsp70), respectively. All of these amygdala disruptions were normalized by the additional deletion of the p21 protein-activated kinase (Pak1) gene. We also rescued the social behavior deficits in Nf1+/− mice with pharmacological blockade of Pak1 directly in the amygdala. These findings provide insights and therapeutic targets for patients with NF1 and ASDs.


Here is the very informative and readable press release.

 


INDIANAPOLIS -- Blocking a single gene that is active in the brain could provide a means to lessen behavioral problems among children with a common genetic disease, many of whom are also diagnosed with an autism disorder, according to researchers at the Indiana University School of Medicine.
The genetic disorder, neurofibromatosis type 1, is one of the most common single-gene diseases, affecting about 1 in 3,000 children worldwide. Symptoms can range from café-au-lait spots on the skin to tumors that are disfiguring or that can press dangerously against internal organs.
"Physicians are increasingly recognizing that many children with the disorder have social and behavioral difficulties, and as many as one in five cases of autism may be associated with the same biochemical defects seen in neurofibromatosis type 1," said Anantha Shekhar, M.D., Ph.D., Raymond E. Houk Professor of Psychiatry at the IU School of Medicine.
The researchers used a mouse model of neurofibromatosis, examining both behavioral differences from normal mice and biochemical differences in the animals' brains, particularly in the amygdala, a brain structure associated with social behavior and emotional regulation.
Reporting their work in the journal Nature Neuroscience, the researchers found that the neurofibromatosis model mice had problems with long term social learning -- remembering important social cues involving interactions with other mice. Tests also showed that neurochemical pathways between structures of the brain involved with social behavior were disrupted by the neurofibromatosis mutation.
However, blocking the activity of another gene -- called Pak1, which is involved with those neurochemical pathways -- improved the social behaviors of the mice. Mice bred to have both the neurofibromatosis mutation and the deletion of the Pak1 gene engaged in social behavior similar to normal mice. In addition, mice with the neurofibromatosis mutation that were injected with a compound known to block Pak1 gene activity had normal social behavior restored.
"These findings could lead to novel approaches to treating behavioral problems that are seen in NF1 patients and some patients with autism spectrum disorders," said D. Wade Clapp, M.D., Richard L. Schreiner Professor of Pediatrics at the IU School of Medicine.


Implications

The researchers from Indiana are suggesting that 20% of people with autism may have the same dysfunction as the very much rarer condition of neurofibromatosis type 1.  Those 20% are likely to benefit from treatments shown to be effective in NF-1.

How do you know whether you are in the 20%?  A little genetic testing might tell you, or maybe not (see below).

In the absence of such testing, you could possibly deduce something from looking at the comorbidities.

It might seem odd that NF-1, a rare disorder affecting 1 in 3,000 children could share its underpinnings with 20% of children with autism, which would roughly equate to 6 in 3,000 children.

This reminds me of a question I raised earlier:-


In that post it became clear that you can have a partial dysfunction of a “rare” genetic disorder.  I wonder if that partial dysfunction will show up on today’s genetic tests.


Comorbidities

The comorbidities of autism that most intrigue me are asthma, allergies and ulcerative colitis.  I have a suspicion that they are all linked by mast cell degranulation and further, that what is underlying autism is promoting mast cells to degranulate.

A recent study showed how PAK1 is involved in modulating mast cell degranulation:-

 

And another one:- 

PAK1 AS A THERAPEUTIC TARGET


Fortunately, the effects of PAK1-deficiency on the immune system have a very encouraging up-side. As demonstrated by otherwise relatively healthy PAK1-/- mice, Pak1 is critical for disassembly of cortical F-actin upon allergen stimulation, and PAK1 deficiency prevents the release of pro-inflammatory molecules from the granules of mast cells during the IgE-associated allergic responses


I have already shown the effectiveness of Verapamil as a therapy for autism and mast cell degranulation.  I suspect that a further improvement may follow with a potent PAK1 inhibitor.

I think the Indiana research also points in the same direction.

There is also the issue of malformed dendritic spines, which will be fully addressed in a later post.  This appears in autism and schizophrenia and may explain much of why autistic brains function differently to other peoples.  It is thought that this malformation is also linked to PAK1.

So while treating mast cell degranulation will help some people’s autism, you could also go one step backwards up the chain and address the signal that was prompting them to degranulate.  This same signal may trigger an unrelated damaging cascade of events elsewhere in the brain.


Which PAK1 inhibitor?

In earlier post we saw that the choices of PAK1 inhibitor are:-

1.     Experimental drugs still under development by Afraxis, the MIT spin-off  

2.     Ivermectin, an old anti-parasite drug, used with some success by fringe alternative doctors in the US.  At least one reader of this blog is a fan of Ivermectin for autism.
 
3.     Certain types of Propolis, like the one containing CAPE (Caffeic Acid Phenethyl Ester) that comes from New Zealand
 
The question remains whether the Propolis is potent enough to have the same effect as Ivermectin.  In the NF-1 and NF-2 community, opinion is split as to whether Propolis can shrink existing tumours.  This issue of stopping new tumours developing, versus shrinking existing ones does seem to crop up quite often in cancer research as well.  Drugs are, not surprisingly, most effective when used very early on.

Ivermectin cannot be used long term continuously, since it is toxic.  It can be used “on and off” for decades as an anti-parasite therapy.


Crossing the Blood Brain Barrier

Once question arose in an earlier post as to how Ivermectin could be effective in autism, since it does not readily cross the blood brain barrier.  According to the experts it does not have to, see below:-

PAK1 AS A THERAPEUTIC TARGET


11. Expert opinion: Is PAK1 a suitable target for therapy?

As discussed above, there is growing evidence that PAKs are involved in the phenomena that are clinically significant for various cardio-vascular disorders, but the specificity of PAK1 involvement is still uncertain. Studies indicate that even closely related PAKs (e.g. PAK1 and PAK2) have non-identical sets of substrates. The issue is further complicated because of the multiple and sometimes opposing roles of PAKs in these processes and certainly merits further investigation.

The reports on the involvement of PAK1 in various diseases of the brain indicate that both up- and down-regulation of this enzyme may be associated with pathological changes. This, along with the uncertainty about the relative contribution of other isoforms, clouds the prospect of targeting PAK1 for therapeutic intervention in these conditions. Furthermore, these observations necessitate a close attention to the affects that any anti-PAK therapy targeted at other organs might have on the nervous system, including the cognitive functions and the memory. In this regard, failure of an anti-PAK1 agent to penetrate the blood-brain barrier may not be a detriment to its therapeutic utility. Similarly complicated is the question of PAK1 targeting in infections: while it may partially attenuate certain viruses, it would also negatively impact some functions of the immune system. In fact, the recent report of PAK1-deficient animals having IgE-mediated responses to allergens may indicate that, at least, for such acute life-threatening conditions as anaphylaxis the benefits of suppressing PAK1 may outweigh the risks.



My PAK-1 inhibitor Trial

I am practicing what I preach, so to speak.  Only once the pollen allergy season is well and truly over, will I trial my PAK-1 inhibitor.  I want a genuine result, free from external effects, like degranulating mast cells.

Since Ivermectin is known to react with other drugs in my PolyPill, I will be using the Propolis from New Zealand. 












Friday 26 September 2014

Autism Drugs - Horses for Courses and Safety over Assured Efficacy?




Only a few months goes by without there being an uplifting report in the media of some breakthrough drug for autism.  These reports usually relate to research on mice.

So where are the resulting approved drugs for use on humans?

There still are no drugs approved for the core symptoms of autism.  It is quite likely that in spite of all the ongoing research, the situation will not change anytime soon.

I was reading about yet another potential wonder treatment, based on research into a very old drug called Suramin.   This rather toxic drug has been shown to be effective in a particular mouse model of autism call MIA (Maternal Immune Activation).  There is some doubt as to whether the researchers have got the method of action correct, but nobody doubts the positive effect it had on some mice.

Today’s post does not look at the science of Suramin, which is, by the way, another anti-parasite drug like Ivermectin, which I looked at earlier.  The subject of this post is much more down to earth and practical.


There is a problem with all Autism Clinical Trials

It is not just me that thinks something is amiss with Autism Clinical Trials, first read what the head of Medical Research at Autism Speaks has to say.  He is talking about this in the context of Naviaux’s recent trials of Suramin on “autistic” mice:-



Paul Wang, Head of Medical Research, Autism Speaks :-

Hedging bets: “Animal models of autism, such as the maternal immune activation (MIA) model studied here by Naviaux and his colleagues, are the best tools that researchers have for examining the cellular and molecular pathophysiology of autism and for testing experimental treatments before they can be advanced to human trials.

“But, of course, none of the models can be considered valid until treatment effects in them are proven to be predictive of effects in people. In the case of the MIA mouse, the authors here candidly hedge their bets by calling it a model of both autism and schizophrenia. Meanwhile, the field of autism research wisely hedges its own bets by studying multiple treatments of the MIA mouse, including probiotics as well as antipurinergic therapy.”

Precedent lacking: “Although milestones in the initial stage of testing basic research findings for translational research continue to accumulate — from mGluR5-targeted rescue of the FMR1 knockout mouse to suramin reversal of social deficits in the MIA mouse — we appear to be making little headway on the hurdles of clinical trials. From arbaclofen to oxytocin to Trichuris suis ova, clinical trial results have been tepid at best. This should not be surprising. We have no successful precedent to guide the design of clinical trials in autism.
“How should we quantitate clinical improvement — or deterioration? How long must treatment be provided before effects are evident? At what age will each treatment be most effective: 6 years? 16 years? 6 months? Which individuals will benefit most from each treatment: those with more severe or more mild symptoms? Those with regression or not? Those with or without comorbidities? Results in Phelan-McDermid syndrome (presented by Joseph Buxbaum at the 2014 International Meeting for Autism Research) represent a rare but preliminary exception to the frustrations of clinical trials.”

Clearing the hurdles: “As basic research continues to generate more candidate treatments for autism, we need to work harder on clinical trials. Most especially, we need to identify measures of improvement that emerge early, potentially within a few weeks of treatment initiation and well before the broad functional improvement that the U.S. Food and Drug Administration is likely to require for drug approval.”

 
Multiple mouse models, suggests multiple human types of autism

The fact that researchers have created multiple types of mutant mice that mimic autistic behaviour does rather suggest that numerous distinct dysfunctions in humans might also result in autistic behaviour. 

In fact it is now a widely held belief, in the scientific community, that there are numerous sub-types of autism, each with its own biological dysfunction(s).


Clinical trials doomed to fail?

Since no effort is made to stratify the autistic population by sub-type, clinical trials are likely doomed to fail.  They usually just require that participants fall into the vague autism behavioral category of DSMIV, or now DSM V.

While a trial drug may indeed have a positive effect in one sub-type of autism, it may have no effect, or worse still a negative effect in other subtypes.  This is exactly what happed with Arbaclofen, and Roche pulled the plug on that one.


Horses for Courses

Perhaps a more pragmatic approach is required.  “Horses for courses”, was suggested to me the other day by that prolific autism science blogger from Sunderland.

Just accept that one Alzheimer’s drug may work for Fragile X, but be totally in-effective in broader autism.  Or maybe it only works in some people with Fragile-X?

This sound fine, but what if you do not know which “course” your horse (child) is running on?

Science may indeed have the answer in the form of something called micro RNA analysis, which is a way of looking for a large number of known genetic dysfunctions quickly and therefore relatively cheaply.  It just needs a blood sample. It is available to autism researchers today.

In the meantime we are left with that reliable old workhorse called trial and error, which does seem to work, if you do your homework.


Safety over Assured Efficacy

While clinical trials may not be able to guarantee which drugs are helpful in autism, they can tell us which are safe to use.  Fortunately many of the interesting drugs for autism are existing ones that have been in use for decades, but for other conditions.

One interesting point I noticed in the autism trials of Alzheimer’s drugs was that the drugs were very well tolerated.  Not surprisingly, older patients claim to have far more frequent side effects, since they likely have multiple ailments and may attribute their various ills to the new drug.

So what is required to treat autism is a range of drugs that are known to be safe for long term use; and then some indication of effectiveness in some people with autism.

Last year, when reading the very detailed critique of most recent clinical trials into autism, produced  by the UK’s National Institute for Health and Care Excellence (NICE), it was clear that they are looking for a level of success in clinical trials that will likely never materialize.  This was a 700 page document produced in advance of the final 40 page report.  Only the 40 page report seems to be available now.

A “one size fits all” approach will fail, because “autism” is a vague behavioral diagnosis and not a precise biological one.

Any particular drug might be effective in only 10% of what psychiatrists rather arbitrarily define as “autism”, but if your child is in that 10%, you would be delighted.

The logical way forward is blocked for most people, since they cannot access even very safe prescription drugs.  This is of course for the “greater good” of society and avoids doctors worrying about getting prosecuted for malpractice.