UA-45667900-1

Wednesday 19 November 2014

The over-activated immune system, Kv1.3, ASD-IE, Acacetin and sloppy science

One of the people I have met during my investigation into autism, recently pointed out to me that much scientific research cannot be trusted.  He forwarded a study to me showing just how many researchers admit is omitting data that did not suit what they were trying to prove.  I replied that I made a point of checking the credentials of the lead author.  He then replied that it is not the lead researcher who collects the data, he has a little army of PhD students doing this and nobody is checking them.

The study showed it was the younger researchers, eager to prove themselves that were the most likely to “fiddle” the results.  The problem is that by the time you become an “older researcher” you are not the one collecting the data.


Doubts about Sprouts 

One of the people who I keep forgetting to add to my Dean’s list is John Gargus; he is a professor at University of California at Irvine and Director of the Center for Autism Research and Treatment at UCI.  He is also a specialist in the complex field of ion channels and channelopathies.

He was asked to comment about the Johns Hopkins broccoli/Sulforaphane autism trial.

Trial sprouts doubts about broccoli extract for autism
Cruciferous caution: 

Some independent researchers have similar reservations, noting that the control group showed an unusually small placebo response.“You always see a 20 to 25 percent improvement in placebo,” says John Jay Gargus, director of the Center for Autism Research and Translation at the University of California, Irvine. For example, the placebo effect plagued trials of the gut hormone secretin and antidepressants for autism.
“It’s stunning that they’ve managed to have found a placebo that doesn’t give the placebo effect that we see in every other neuropsychiatric drug trial,” Gargus says.

Now as regular readers will know, at least in Monty, aged 11 with ASD, broccoli sprout powder and we assume the Sulforaphane produced by it, does have a near immediate effect.

But as Gargus says, you will always have some people with the placebo appearing to improve.  In an old post I looked at the placebo effect in autism.  It seems that the more involved the trial and hence the more 1:1 attention the child gets, the more the placebo appears to make things better.  In fact it was not the placebo, it was the 1:1 attention that improved the autism.

So, just as we have to be cautious of the placebo effect, we have to be cautious of sloppy science/scientists.  When financial interests are involved you need to be even more cautious.

The other thing I have learnt to be cautious of, is scientists who have spent many years in one very narrow field, often trying to prove their initial hypothesis to be correct.  Their eyes are then closed to everything else.


Autism Flare-ups, Summertime raging and GI issues

We have investigated in depth the fact that in some people with autism their immune system appears to be over-activated, as the result of an allergic response.  What then happens is that their autism “flares-up” and therapies that previously worked, seem to stop doing so.

The conclusion was that the allergy had caused mast cell activation and this triggered the release of pro-inflammatory chemicals (IL-6, histamine etc).  The solution was:-

·        Avoid the allergen (a type of food, or even airborne pollen)
·        Use mast cell stabilizers to minimize degranulation; even common H1 anti-histamines are partially effective
·        Inhibit the potassium ion channel Kv1.3, which seems to mediate the resulting “over-activation” of the immune response.

The good news is that it really does work and not just in Monty.  The bad news is that the optimal therapy uses a prescription drug (Verapamil).

While trawling through the research on novel anti-oxidants, I stumbled upon something that may help those people who cannot access Verapamil.

There is a flavonoid called Acacetin, which is found in asplenioid ferns.  This flavonoid has long been has used for its anti-inflammatory and immunomodulatory effects.  Now it has been shown to block Kv1.3 channels and inhibits human T cell activation.  This is one of the effects of Verapamil (there are others).  Acacetin has also been shown to have anti-cancer properties in prostate cancer cells.







Remember the odd therapy used to block Kv1.3, those TSO parasites, I mentioned in previous posts.  My favorite is this one:-



Acacetin is available as a supplement.  So if you think blocking Kv1.3 might help and cannot access Verapamil or TSO, there are other options.

Indeed, for completeness, there at least two other Kv1.3 blockers that are available.  One is progesterone, the hormone and the other is Curcumin.
  
  
You may recall that Progesterone was found to be highly neuro-protective and for this reason was trialed for use in the ER, immediately after a traumatic brain injury.  It was shown to save lives.  In autism, we previously found that some people, at the high functioning end, find they feel better when they apply progesterone cream, i.e. transdermal route.

Curcumin has been used for centuries as a drug.

I have not tried them, but I will continue to use Verapamil.  Acacetin, Progesterone and Curcumin share some, but not all of each other’s effects.

Progesterone, in common with Verapamil, affects both potassium and calcium channels.

There are many different potassium and calcium channels and you would hope to find a selective channel blocker and hence affect only the ones you need to.


ASD-IS  (Inflammatory Subtype)

I came across a promising study on Paul Whiteley’s blog.  It is a study of a sub-type of autism characterized by fluctuating behavioral symptoms following immune insults.  In the trial group the children all had GI problems, some had enterocolitis or esophagitis.  The entire group had been noticed by teachers/therapists to lose cognitive skills following immune insults.



Regular readers of this blog will see lots of familiar points.  This appears to be exactly the same thing as my “over-activated immune response”.

Now this study comprised children who had Non-IgE mediated allergies.  This does matter because classic allergies are called IgE-mediated and they result in little cells called mast cells getting activated and then releasing IL-6 and histamine in the blood supply.

From Wikipedia we have a summary:-

Conditions caused by food allergies are classified into 3 groups according to the mechanism of the allergic response:

1.     IgE-mediated (classic) – the most common type, occurs shortly after eating and may involve anaphalaxis.
2.     Non-IgE mediated – characterized by an immune response not involving immunoglobulin E; may occur some hours after eating, complicating diagnosis.
3.     IgE and/or non-IgE-mediated – a hybrid of the above two types.


Treating allergy is a “fuzzy” area and, depending on which country you live in, some aspects are seen as science and others pseudo-science. 

Perhaps we should see it as an important, but emerging field of science.

I am not an allergist/immunologist, so I have to look things up.

Since in the trial the children had Non-IgE mediated allergies, we can then look to see whether mast cell activation is relevant.

NON-IgE MEDIATED FOOD ALLERGY 
Mast cell and eosinophil activation is an important component of the non-IgE-mediated response

The authors of the autism study believe that the research subjects with allergy did not have mast cell activation, because they had NON-IgE mediated allergies.

Since I am not an allergist, all I can say is the author of the above paper from the Royal Free & University College School of Medicine in London thinks that mast cell activation is an important component of the non-IgE-mediated response.

Anyway, make your own mind up and continue to see what the study found.

The study looked at children with autism and allergy, whose autism flares up and affects (impairs) their cognitive function.  This group is ASD-IS (Inflammatory Subtype)


ASD-IS children: ASD-IS children are defined as those with a history of fluctuating behavioral symptoms following immune insults (mainly microbial infection). Symptoms must have been documented by individuals other than parents, such as teachers/therapists, a minimum of three times. In addition, a history of persistent GI symptoms, often diagnosed as non-IgE mediated food allergy (NFA - see next section for diagnostic criteria), is required. Among the ASD-IS subjects, 14/24 subjects were diagnosed with food protein induced enterocolitis syndrome (FPIES), a severe form of NFA, prior to enrollment in this study, and two ASD-IS subjects were diagnosed with eosinophilic esophagitis (EoE) on the basis of biopsy results. These ASD-IS subjects reported to have had loss of once-acquired cognitive skills based on the reports of teachers, therapists and/or previous records of developmental assessment.

We defined flaresas worsening behavioral symptoms following immune insults, despite the resolution of acute conditions such as viral syndrome (that is, the resolution of other infectious symptoms if associated with a microbial infection, lack of fever, and no other acute physical symptoms associated with immune insults). Most of the immune insults in this study were clinically judged to be microbial infection (mainly viral syndrome). In ASD-IS children, we obtained samples at least once in the flareand non-flarestates. Changes in behavioral symptoms by parental reports were confirmed by reports from
teachers and other caregivers.













The authors have an entirely different hypothesis to mine.

But I find their data remarkably similar to what I see being caused by a pollen allergy in my son - summertime autism flare-up and regression.  This is why there were so many posts about the inflammatory cytokine IL-6 and how to minimize it.

Have the authors stumbled upon exactly the same phenomenon as I did?  I very much think so.

I have shared my therapy with the authors, but they think that Non-IgE mediated allergies have nothing to do with mast cell activation.   That sounds odd to me.








Monday 17 November 2014

Tuning Wnt Signaling for more/fewer hairs and to optimize Dendritic Spine Morphology in Autism




Today’s post is about another example of how evolution can play jokes on us.  It really is the case that a signaling pathway that controls hair growth is the same that determines the number and shape of dendritic spines in the brain.

This is good news not just for Homer Simpson but for people interesting in perking up behavior and cognitive function in autism.

The post also connects several subjects that we have previously encountered - dendritic spines which are abnormal in autism, Wnt signaling which is implicated in cancer (and autism), statins, Ivermectin, CAPE found in some propolis and verapamil.  There is plenty of research to back all these connections, but strangely nobody seems to be applying them to develop any practical therapies.

I introduced dendritic spines in an earlier post.  Each neuron in your brain has hundreds of protruding spines.
Dendritic Spines in Autism – Why, and potentially how, to modify them

In that post I reported that PAK1, the gene NrCAM and the protein MTOR were all implicated in the dysfunction in both shape and number of these spines.

It now seems that there may be one even more critical pathway involved – Wnt. There are links between Wnt and PAK1, that appeared in several earlier posts.

You may recall that dendritic spines are constantly changing shape.  Their shape affects their function.  In many disorders, both the number and shape of the spines is dysfunctional.  It appears that the morphology (shape) can be modified, which implies you could affect behavior, memory, and cognitive function.







My follow up post of dendritic spines has yet to materialize, but here is a sneak preview, showing the progression of autism, schizophrenia and Alzheimer’s in terms of the number of dendritic spines.









Dendritic Spines and Wnt Signaling

Dendritic spines are constantly changing their shape and certain psychiatric disorders are characterized by different morphologies (shapes) of these spines.  It is not just the number of spines, but their shape which affects cognitive function, memory and behavior.

The Wnt signaling pathway also lies behind hair growth.

What is more, we know that Wnt signaling is dysfunctional in autism and we even now which the genes are that likely trigger of this dysfunction.

Wnt dysfunction is also involved in many types of cancer and therefore has been subject of much research.

The surprise came when I read that attempts are underway to “tune” Wnt signaling to control hair growth.  Why not autism?

This post is about tuning Wnt signaling to improve cognitive function and behavior.  This appears just as plausible as controlling hair growth.



The Wnt Signaling Pathways

Here is the Wikipedia explanation.

Wnt signaling pathway



The Wnt signaling pathways are a group of signal transduction pathways made of proteins that pass signals from outside of a cell through cell surface receptors to the inside of the cell. Three Wnt signaling pathways have been characterized: the canonical Wnt pathway, the noncanonical planar cell polarity pathway, and the noncanonical Wnt/calcium pathway. All three Wnt signaling pathways are activated by the binding of a Wnt-protein ligand to a Frizzled family receptor, which passes the biological signal to the protein Dishevelled inside the cell. The canonical Wnt pathway leads to regulation of gene transcription, the noncanonical planar cell polarity pathway regulates the cytoskeleton that is responsible for the shape of the cell, and the noncanonical Wnt/calcium pathway regulates calcium inside the cell. Wnt signaling pathways use either nearby cell-cell communication (paracrine) or same-cell communication (autocrine). They are highly evolutionarily conserved, which means they are similar across many species from fruit flies to humans.[1][2]
Wnt signaling was first identified for its role in carcinogenesis, but has since been recognized for its function in embryonic development. The embryonic processes it controls include body axis patterning, cell fate specification, cell proliferation, and cell migration. These processes are necessary for proper formation of important tissues including bone, heart, and muscle. Its role in embryonic development was discovered when genetic mutations in proteins in the Wnt pathway produced abnormal fruit fly embryos. Later research found that the genes responsible for these abnormalities also influenced breast cancer development in mice.
The clinical importance of this pathway has been demonstrated by mutations that lead to a variety of diseases, including breast and prostate cancer, glioblastoma, type II diabetes, and others.[3][4]


The Canonical Wnt pathway is dysfunctional in Autism

It is the canonical Wnt pathway that is dysfunction in autism and it is this same pathway plays a role in dendrite growth and suboptimal Wnt activity negatively affects the dendritic arbor.

A very thorough review of all the genetic evidence is provided in the following study:



Notably, the available genetic information indicates that not only canonical Wnt pathway activation, but also inhibition seems to increase autism risk. The canonical Wnt pathway plays a role in dendrite growth and suboptimal activity negatively affects the dendritic arbor. In principle, this provides a logical explanation as to why both hypo- and hyperactivity may generate a similar set of behavioral and cognitive symptoms.


The review highlights that, as we have seen before, some people with autism are hypo and some people are hyper; this means some people need Wnt signaling to be inhibited and other people need the opposite therapy.  The author points out that you really need some test to check which way you need your Wnt “tuned”.  

It sounds a bit like tuning the timing of the sparks inside your car engine, in the days before it was all electronic and self-tuning.  In theory you needed to measure the timing of the sparks with a special strobe light; but if you knew what you were doing you could just use your ears.  So in the same vein, you could make a small change to inhibit Wnt and see the result, if it made matters worse you just stop and go the other way.  As you will see later in this post, some of us are already tuning Wnt without even realizing it.

We have exactly the same issue with mGluR5, where you might need a positive/negative allosteric modulator to optimize brain performance.  Different variants of “autism” would be located either left or right of “top dead center”.

In that post we learnt that at MIT they are suggesting that errors in synaptic protein synthesis are behind several types of autism and that these errors can be corrected using either positive or negative stimulators of the receptor mGluR5.









For a more detailed understanding of Wnt signaling, see the paper below:-





For Homer Simpson and others wanting more hair




Abnormal hair development and regeneration has been implicated in diseases of the skin (ie., hirsutism, alopecia, etc) or in open wounds when hair follicles are completely eliminated. To manage these clinical conditions, it is important to understand molecular pathways which regulate the number, size, growth and regeneration of hair follicles. Wnt signaling plays a fundamental role in this process. We need a deeper understanding so we can reliably adjust Wnt levels in existing follicles. This studies reviewed here have future translational value for skin regeneration following severe wound injuries or in the context of tissue engineering. Tuning the levels of Wnt ligands can directly modulate the number and growth of hairs. Using this new knowledge, we now know that Wnt activity can be modulated by adjusting the secretion of Wnt ligands, altering binding of ligands to receptors, inhibiting β-catenin translocation, or by regulating extra-follicular dermal Wnt and Wnt inhibitors.



How to tune Dendritic Spine Morphology

We have already encounter Brain-Derived Neurotropic Factor  (BDNF) in an earlier post.  You could think of BDNF as brain fertilizer.



“Older people and anyone with Retts Syndrome are likely to benefit from more NGF (Nerve Growth Factor).  In autism it appears possible that there was too much NGF and BDNF at a very early age, with levels then changing.  High levels of NGF and BDNF look a bad idea.  A lot more research is needed to understand what determines  NGF and BDNF levels.  It appears that BDNF may stay high in autism, but NGF levels.”

It has been shown that BDNF and Wnt signaling together regulate dendritic spine formation.

So, since in autism we have excess BDNF as the brain is developing, this might explain there are too many dendritic spines in autistic brains.  Too many spines and the wrong morphology (shape) would explain very many issues that have gone “wrong” in autistic brains.




Here, we show that Wnt signaling inhibition in cultured cortical neurons disrupts dendritic spine development, reduces dendritic arbor size and complexity, and blocks BDNF-induced dendritic spine formation and maturation. Additionally, we show that BDNF regulates expression of Wnt2, and that Wnt2 is sufficient to promote cortical dendrite growth and dendritic spine formation. Together, these data suggest that BDNF and Wnt signaling cooperatively regulate dendritic spine formation.
BDNF overexpression rapidly and robustly increases primary dendrite formation in cortical neurons (Horch et al., 1999; McAllister et al., 1997; Wirth et al., 2003). We reproduced this finding, and found that this increase was not blocked by overexpression of the Wnt inhibitors (Fig. S2), indicating that some aspects of BDNF modulation of dendrites remain intact in the presence of Wnt inhibitors. To further assess whether expression of the Wnt inhibitors impaired the signaling ability of BDNF, we analyzed autocrine induction of c-Fos expression by BDNF overexpression. c-Fos is an immediate early gene whose transcription is rapidly upregulated by BDNF (Calella et al., 2007; Gaiddon et al., 1996). We found that BDNF induced c-Fos expression was not reduced in neurons overexpressing any of the four Wnt inhibitors, suggesting that the ability of the inhibitors to interfere with BDNF-induced spine formation and spine head width expansion was not a result of decreased levels of BDNF signaling (Fig. S3).

Wnt2 overexpression is sufficient to increase cortical dendrite length. (A) Representative cortical neurons expressing either EV or Wnt2. Quantification of the total dendrite length per neuron (B) and the number of dendritic endpoints per neuron (C) for ...
Wnt2 overexpression increases dendritic protrusion density and influences spine shape on cortical neurons. (A) Representative dendritic segments of cortical neurons expressing either EV or Wnt2. (B) Quantification of dendritic protrusion density. (C) ...


Wnt inhibition and dendritic spine maturation

We found that a series of different Wnt signaling inhibitors were able to block BDNF-induced increases in dendritic spine density and dendritic spine head width


I think all this existing science really tells us a lot.


Back in the slow lane

In cancer research, decades have already been spent investigating Wnt signaling.




Drugs that Enhance Wnt Signaling

Back in my world, with a little help from Google scholar, I rapidly find that drugs already exist that affect Wnt signaling.  Some very familiar names pop up.




SummaryStatins improve recovery from traumatic brain injury and show promise in preventing Alzheimer disease. However, the mechanisms by which statins may be therapeutic for neurological conditions are not fully understood. In this study, we present the initial evidence that oral administration of simvastatin in mice enhances Wnt signaling in vivo. Concomitantly, simvastatin enhances neurogenesis in cultured adult neural progenitor cells as well as in the dentate gyrus of adult mice. Finally, we find that statins enhance Wnt signaling through regulation of isoprenoid synthesis and not through cholesterol. These findings provide direct evidence that Wnt signaling is enhanced in vivo by simvastatin and that this elevation of Wnt signaling is required for the neurogenic effects of simvastatin. Collectively, these data add to the growing body of evidence that statins may have therapeutic value for treating certain neurological disorders.Simvastatin rescues cerebrovascular and memory-related deficits in mouse models of Alzheimer disease (AD) (Li et al., 2006; Tong et al., 2009, 2012), and recent meta-analysis of clinical studies concluded that statins provide a slight benefit in the prevention of AD and all-type dementia (Wong et al., 2013). While these effects have been attributed to reduction of inflammation, reduced oxidative stress, upregulated PI3K/AKT signaling, and enhanced neurogenesis, the mechanisms by which statins are beneficial in neurological disorders are not fully understood.Simva is under investigation for its potential therapeutic effects outside of hyperlipidemia treatment. While statins have been reported to enhance Wnt signaling in vitro, it was heretofore not known whether statins can enhance this pathway in vivo and in the context of neurogenesis. Here we provide evidence that oral simva treatment enhances Wnt signaling in the mammalian adult hippocampus. This is significant in that aside from lithium, no other clinically approved compound has been demonstrated to enhance Wnt signaling in the brain


You will find the element Lithium in your smart phone battery, but it is also a drug.

Lithium is useful in the treatment of bipolar disorder. Lithium salts may also be helpful for related diagnoses, such as schizoaffective disorder and cyclic major depression. The active part of these salts is the lithium ion Li+.

But, not surprisingly, Lithium has other effects, like activating Wnt signaling.





Drugs that inhibit Wnt Signaling

There are drugs with the opposite effect, inhibiting Wnt signaling.


Abstract
In past years, the canonical Wnt/β-catenin signaling pathway has emerged as a critical regulator of cartilage development and homeostasis. FRZB, a soluble antagonist of Wnt signaling, has been studied in osteoarthritis (OA) animal models and OA patients as a modulator of Wnt signaling. We screened for FDA-approved drugs that induce FRZB expression and suppress Wnt/β-catenin signaling. We found that verapamil, a widely prescribed L-type calcium channel blocker, elevated FRZB expression and suppressed Wnt/β-catenin signaling in human OA chondrocytes. Expression and nuclear translocation of β-catenin was attenuated by verapamil in OA chondrocytes. Lack of the verapamil effects in LiCl-treated and FRZB-downregulated OA chondrocytes also suggested that verpamil suppressed Wnt signaling by inducing FRZB. Verapamil enhanced gene expressions of chondrogenic markers of ACAN encoding aggrecan, COL2A1 encoding collagen type II α1, and SOX9, and suppressed Wnt-responsive AXIN2 and MMP3 in human OA chondrocytes. Verapamil ameliorated Wnt3A-induced proteoglycan loss in chondrogenically differentiated ATDC5 cells. Verapamil inhibited hypertrophic differentiation of chondrocytes in the explant culture of mouse tibiae. Intraarticular injection of verapamil inhibited OA progression as well as nuclear localizations of β-catenin in a rat OA model. We propose that verapamil holds promise as a potent therapeutic agent for OA by upregulating FRZB and subsequently downregulating Wnt/β-catenin signaling.








AbstractConstitutive activation of canonical WNT-TCF signaling is implicated in multiple diseases, including intestine and lung cancers, but there are no WNT-TCF antagonists in clinical use. We have performed a repositioning screen for WNT-TCF response blockers aiming to recapitulate the genetic blockade afforded by dominant-negative TCF. We report that Ivermectin inhibits the expression of WNT-TCF targets, mimicking dnTCF, and that its low concentration effects are rescued by direct activation by TCFVP16. Ivermectin inhibits the proliferation and increases apoptosis of various human cancer types. It represses the levels of C-terminal β-CATENIN phosphoforms and of CYCLIN D1 in an okadaic acid-sensitive manner, indicating its action involves protein phosphatases. In vivo, Ivermectin selectively inhibits TCF-dependent, but not TCF-independent, xenograft growth without obvious side effects. Analysis of single semi-synthetic derivatives highlights Selamectin, urging its clinical testing and the exploration of the macrocyclic lactone chemical space. Given that Ivermectin is a safe anti-parasitic agent used by > 200 million people against river blindness, our results suggest its additional use as a therapeutic WNT-TCF pathway response blocker to treat WNT-TCF-dependent diseases including multiple cancers.


Previous studies have revealed that its anti-tumor function could be attributed to its ability to suppress the abnormal Wnt/β-catenin signaling pathway


What about hair loss/gain?

To quote from  the previous study on hair loss gain:-

“Using this new knowledge, we now know that Wnt activity can be modulated by adjusting the secretion of Wnt ligands, altering binding of ligands to receptors, inhibiting β-catenin translocation, or by regulating extra-follicular dermal Wnt and Wnt inhibitors.”

We have now learnt that the drug Verapamil is thought to be a Wnt inhibitor.  So it would be fair to assume that hair loss would be reported as a side effect of using Verapamil.  Indeed it is.

Dermatologic side effects have included rash (up to 1.4%). Diaphoresis has been reported with intravenous verapamil. Arthralgia and rash, exanthema, hair loss, hyperkeratosis, macules, sweating, urticaria, Stevens-Johnson syndrome, and erythema multiforme have been reported during open trials/postmarketing experience.


What about Statins and hair?

So many millions of people take statins, of course somebody would claim it causes hair loss (alopecia).  I think it should cause hair gain.  As with Verapamil the effect on the hair growth would be much greater if it was applied to the skin and not taken orally.  Maybe older people would not go to the doctor to complain about hair gain?




Summary

·        As hair loss is a generally accepted male characteristic, drug-induced alopecia may be mistaken as part of a natural process and therefore under reported.
·        There have been reports of alopecia associated with the use of all UK licensed statins but there is insufficient data to confidently attribute hair loss to statin use.
·        Case studies suggest an association but as yet there is insufficient information to suggest a mechanism, make comparisons of the individual incidence of alopecia between the various statins or propose a class effect.
·        The greatest number of reports of alopecia is for simvastatin but this may be related to a greater market share or length of time on market.


It would seem that enough people lose hair from Verapamil for it to be a published side effect.  The same is not true for statins and I think hair loss may be coincidental.


But, maybe too much and too little Wnt signaling cause hair loss ?

Recall earlier in this post that Hans Otto Kalkman suggested that both too much and too little Wnt might cause similar behavioral and cognitive symptoms.  Perhaps the same is true with hair growth.

The canonical Wnt pathway plays a role in dendrite growth and suboptimal activity negatively affects the dendritic arbor. In principle, this provides a logical explanation as to why both hypo- and hyperactivity may generate a similar set of behavioral and cognitive symptoms.

For optimal hair growth perhaps there is an optimal amount of Wnt signaling? 

That might explain why a small number of people find Wnt inhibitors (Verapamil) and drugs that enhance Wnt (statins) cause hair loss.

That might mean that people with very full hair have optimal Wnt signaling?

So advise Homer Simpson to find out whether his Wnt signaling is hyper or hypo.  Then he might find either simvastatin or verapamil brings back his full head of hair.



Wnt signaling and Diabetes

Yet again we find another connection between Diabetes and autism.

In the pancreas  β-cells produce insulin. In diabetics these β-cells get destroyed.  It appears that Wnt signaling is involved in controlling these β-cells.  It has been proposed that they could be protected via this pathway.


Role of Wnt signaling in the development of type 2 diabetes.

 

Abstract

Type 2 diabetes is characterized by insulin resistance, insulin deficiency, and hyperglycemia. Susceptibility to type 2 diabetes has been linked to Wnt signaling, which plays an important role in intestinal tumorigenesis. Carriers of variants of the transcription factor 7-like 2 gene, an important component of the Wnt pathway, are at enhanced risk for developing type 2 diabetes. The modulation of proglucagon expression by Wnt activity may partially explain the link between Wnt signaling and diabetes, and one of the transcriptional and processing products of the proglucagon gene, the glucagon-like peptide-1 (GLP-1), exhibits a wide variety of antidiabetogenic activities. GLP-1 stimulates Wnt signaling in pancreatic beta cells, enhancing cell proliferation; thus, positive feedback between GLP-1 and Wnt signaling may result in increased proliferation, and suppressed apoptosis, of pancreatic cells. Since beta-cell protection is a potential treatment for type 2 diabetes, stimulation of Wnt activity may represent a valid therapeutic approach.




Here, we review emerging new evidence that Wnt signaling influences endocrine pancreas development and modulates mature β-cell functions including insulin secretion, survival and proliferation. Alterations in Wnt signaling might also impact other metabolic tissues involved in the pathogenesis of diabetes, with TCF7L2 proposed to modulate adipogenesis and regulate GLP-1 production. Together, these studies point towards a role for Wnt signaling in the pathogenesis of type 2 diabetes, highlighting the importance of further investigation of this pathway to develop new therapies for this disease.





As with autism and cancer, the people with diabetes are also perhaps not benefiting from the latest science.



Oral verapamil administration prevents β-cell apoptosis and STZ-induced diabetes.





The End.