UA-45667900-1
Showing posts with label NAC. Show all posts
Showing posts with label NAC. Show all posts

Tuesday 15 November 2016

Preventing Auto-Immune Disease and some Autism

Today’s post is another one filling in some gaps in this blog.

I think it is common sense to say that preventing a problem from developing is much wiser than trying to solve it later on.  This is a recurring issue in both life and medicine.

In the research we now see preventative measures developed to reduce the risk of cancer, we also see how some interventions are only effective when started very early.

In the case of autism we have seen than often it is caused by a myriad of factors that by themselves might have been harmless but when taken together are the multiples hits that caused the brain to develop differently.

Much research looks individually at these factors that increase the risk of autism.  In the wider media much disdain is directed to these findings as if each factor is THE cause of autism and how can so many things cause autism.  But by understanding these factors you can then set about countering them.

I did create my simplified schematic to explain classic autism a while back.  It is not perfect but it does illustrate much of what is going on.




I do get occasional questions about reducing the risk of autism.  For example, Monty now aged 13 with ASD, has a big brother and he wants to know.  Our reader, Kritika from India, has also raised this issue.  If you have autism in your family you may well decide you would like to minimize the risk of more cases.

In practical terms, you cannot change your genes or those inherited epigenetic markers.  Maybe this will change in future.  But there are things you can do.

We know that oxidative stress is a driver of much disease including autism.  This can be minimized by lifestyle changes and indeed with a little pharmacological help.

I was interested to see a study that used NAC to treat mothers who suffer unexplained pregnancy loss, the antioxidant showed a significant increase in the take-home baby rate”.  I was really just looking for safety information.


Pregnancy could be associated with a state of oxidative stress that could initiate and propagate a cascade of changes that may lead to pregnancy wastage. This process of oxidative stress may be suppressed by the antioxidant effect of N-acetyl cysteine (NAC). The current study aimed to evaluate the effect of NAC therapy in patients diagnosed with unexplained recurrent pregnancy loss (RPL). The study was a prospective controlled study performed in the Women's Health Centre, Assiut University, Egypt. A group of 80 patients with history of recurrent unexplained pregnancy loss were treated with NAC 0.6 g + folic acid 500 microg/day and compared with an aged-matched group of 86 patients treated with folic acid 500 microg/day alone. NAC + folic acid compared with folic acid alone caused a significantly increased rate of continuation of a living pregnancy up to and beyond 20 weeks [P < 0.002, relative risk (RR) 2.9, 95% confidence interval (CI) 1.5-5.6]. NAC + folic acid was associated with a significant increase in the take-home baby rate as compared with folic acid alone (P < 0.047, RR 1.98, 95% CI 1.3-4.0). In conclusion, NAC is a well-tolerated drug that could be a potentially effective treatment in patients with unexplained RPL.


This then made be recall a US fertility clinic, that our reader Roger once mentioned in a comment.




“At Braverman Reproductive Immunology, we believe Autism Spectrum Disorder (ASD) and various pregnancy and infertility complications (listed below) appear to have the same cause. In fact, we have found that a large number of patients who present to our center with the below complications already have a child with ASD.
This discovery started us on the journey to see if ASD itself could be prevented while treating other associated conditions. We believe treatment for these common issues will not only prevent the pregnancy complications listed below, but may also prevent ASD in the group of patients that have already had a child with ASD.”

Dr Braverman does not mention oxidative stress, but perhaps he should.

So step one would be to reduce oxidative stress during pregnancy, via lifestyle changes and taking antioxidants.

Step two would be to avoid inflammation, Dr Braverman refers to the link to auto-immune disease and miscarriage/autism.

We know that maternal inflammation is one of the easiest ways to cause autism in mouse models (the MIA model - Maternal Immune Activation).
  
We have some research to show that the risk of auto-immune disease can indeed be reduced and indeed that the risk of progression from minor to more major auto-immune disease can also be minimized.

We even have a tiny study showing that immuno-modulatory therapy using a probiotic during pregnancy can reduce incidence of ADHD and autism. For me ADHD is just a case of autism-lite.


A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial


Background:

Recent experimental evidence suggests that gut microbiota may alter function within the nervous system providing new insight on the mechanism of neuropsychiatric disorders.

Methods:

Seventy-five infants who were randomized to receive Lactobacillus rhamnosus GG (ATCC 53103) or placebo during the first 6 mo of life were followed-up for 13 y. Gut microbiota was assessed at the age of 3wk, 3, 6, 12, 18, 24 mo, and 13 y using fluorescein in situ hybridization (FISH) and qPCR, and indirectly by determining the blood group secretor type at the age of 13 y. The diagnoses of attention deficit hyperactivity disorder (ADHD) and Asperger syndrome (AS) by a child neurologist or psychiatrist were based on ICD-10 diagnostic criteria.

Results:

At the age of 13 y, ADHD or AS was diagnosed in 6/35 (17.1%) children in the placebo and none in the probiotic group (P = 0.008). The mean (SD) numbers of Bifidobacterium species bacteria in feces during the first 6 mo of life was lower in affected children 8.26 (1.24) log cells/g than in healthy children 9.12 (0.64) log cells/g; P = 0.03.

Conclusion:

Probiotic supplementation early in life may reduce the risk of neuropsychiatric disorder development later in childhood possible by mechanisms not limited to gut microbiota composition.


The issue, as with NAC during pregnancy, is whether immuno-modulatory therapy is safe.

The study on ADHD and autism was actually a study looking at whether a certain probiotic if given during pregnancy could reduce eczema later on in the child.

  
We also have the studied effect of having a pet dog at home.

House dust exposure mediates gut microbiome Lactobacillus enrichmentand airway immune defense against allergens and virus infection

 

Early-life exposure to dogs is protective against allergic disease development, and dog ownership is associated with a distinct milieu of house dust microbial exposures. Here, we show that mice exposed to dog-associated house dust are protected against airway allergen challenge. These animals exhibit reduced Th2 cytokine production, fewer activated T cells, and a distinct gut microbiome composition, highly enriched for Lactobacillus johnsonii, which itself can confer airway protection when orally supplemented as a single species. This study supports the possibility that host–environment interactions that govern allergic or infectious airway disease may be mediated, at least in part, by the impact of environmental exposures on the gastrointestinal microbiome composition and, by extension, its impact on the host immune response.



One of my views is that by early treatment of autism you may indeed reduce the risk of epilepsy.  The key here is “reduce the risk”, it does not mean there is no risk.  There are likely hundreds of causes of epilepsy, but if you can reduce the incidence by 30+% that would look like a big success to me.

I recall another study that looked at treating people with eczema to see if you could reduce the chance of progression to asthma.  Using Ketotifen the trial showed that it was indeed possible.

Prevention of asthma by ketotifen in infants with atopic dermatitis. 

To evaluate the prophylactic effect of ketotifen against the onset of asthma we selected 121 infants with atopic dermatitis, without any history suggestive of asthma (cough and/or wheezing). Sixty-one children received ketotifen twice daily. Those who weighed less than 14 kg received 0.8 mg; 14 kg or more, 1.2 mg. Sixty children, a placebo syrup indistinguishable from the active syrup. Both groups were followed for 1 year, with bimonthly evaluations. The criteria for onset of asthma were two different episodes of wheezing treated with bronchodilator drugs. Both groups were comparable regarding age, sex, weight, onset, and duration of atopic dermatitis and age at the onset of asthma. During the 1 year study, asthma was observed in eight children of the ketotifen group (13.1%) and in 25 children of the placebo group (41.6%) (P less than .001). Side effects were negligible and routine laboratory tests disclosed no significant alterations. Ketotifen is a very useful drug for prevention of asthma in children with atopic dermatitis and total IgE more than 50 IU/mL.


Somali Autism Clusters

This then takes me back to that issue I looked at long ago, which was the reason for the Somali immigrants to Sweden and US having so many children with autism.  This even got termed the Swedish Disease by the migrants, they claimed to have never seen autism back home in Somalia.

Then we have the hygiene hypothesis which in effect says that, within limits, a little dirt is good for you.



Hormonal Dysfunction

We know that gestational diabetes increases the risk of autism and we also known that the mother being hypothyroid increases the risk.  In some cases the hormone dysfunction is a consequence of the auto-immune dysfunction.

We also know the female hormone progesterone is extremely neuro-protective.  The level of this hormone is supposed to rise during pregnancy.




  
In past times hormones were given to some pregnant mothers, but this went out of fashion.  Perhaps this should be revisited?

Then we have the surge of the hormone oxytocin that the baby is supposed to receive at birth.  This surge may be relevant to the GABA switch when shortly after birth this neurotransmitter is supposed to switch from excitatory to inhibitory as the neurons mature. If the baby is born by Caesarian there will be no oxytocin surge for the baby.   



Preventing Regressive Autism Secondary to Mitochondrial Disease (AMD)

It is on open secret that doctors at Johns Hopkins have identified a variant of regressive autism called Autism secondary to Mitochondrial Disease (AMD).

It remains unclear how rare this is and absolutely nobody serious is going to research this, if they ever want to receive a research grant in the future.

We saw that in people with a genetic predisposition to mitochondrial dysfunction, an immune over-reaction to an insult like multiple vaccinations can trigger mitochondrial disease.  This will present itself as autism and quite possibly severe autism in a previously unaffected child.

Those doctors treating AMD use mild immuno-suppressing drugs before any future vaccinations.

How do you minimize the chance of AMD? 

The first thing is to never use paracetamol/acetaminophen in a baby or child, particularly just after vaccination.  This drug may kill the pain but it depletes GSH the body’s main antioxidant, just when it needs it most.   Use something like Ibuprofen.

Vaccines are given in multiples so as to save time and money and I suppose improve compliance. You might expect giving them one-by-one would actually make them more effective as well minimizing any collateral damage to a small percentage of kids.




Conclusion

As I keep reminding readers, I am not a doctor, but it would be nice if a few more doctors other than Braverman took preventing autism seriously.

I would like to know if progesterone is an effective therapy in the MIA model of autism.  In this model they trigger the mother’s immune system during pregnancy which leads to offspring with autism.  What would be the effect of giving progesterone?  Would it protect the pups?

Are progesterone levels reduced in mice that will become autistic?

So I suppose I would trial NAC and progesterone in the mother mouse.

For everyone else it is case of choosing whether or not to make lifestyle changes to reduce oxidative stress.  Improving gut bacteria can be done via probiotics, eating more (slightly dirty) fruit and vegetables, having a pet dog, spending some time in the nature.  

As for vaccine risk, however small it might indeed be, there will never be a serious investigation of this, for understandable reasons. 







Thursday 28 July 2016

Memantine – yet another failed Autism Trial


Memantine (Namenda/ Ebixa) is an Alzheimer’s drug that has been used off-label in autism for many years; but does it actually work?

More than a thousand people with autism have completed clinical trials and yet more trials are in progress. 

A few years ago, at the FDA’s request, the producer of the drug, Forest Laboratories, funded two clinical trials enrolling 903 children with autism.  The results were never fully published because the trials were deemed to have failed to find any positive effect and a note to reflect this is included in each pack of Namenda.

A quick look at ClinicalTrials.gov website shows yet more autism trials in the pipeline.


What is going on?

When Dr Chez made a trial in 2007 he found Memantine to be effective; he has since moved on to stem cell therapy which he also finds to be effective.

The latest study to be published includes Dr Hardan from Stanford, who published that study showing NAC to be effective in autism.  This time his study shows no positive effect.

If you look on the clinical trials site you can see some data for the primary endpoint used in the very big trial funded by Forest Laboratories.  It seems to show 517 responders.







By the time the results were reviewed in detail the conclusion drawn by Forest was “there was no statistically significant difference in the loss of therapeutic response rates between patients randomized to remain on full-dose memantine (n=153) and those randomized to switch to placebo”. 

In other words it does not work.

The drug itself now carries this note:-

8.4 Pediatric Use

The safety and effectiveness of memantine in pediatric patients have not been established.
Memantine failed to demonstrate efficacy in two 12-week controlled clinical studies of 578 pediatric patients aged 6-12 years with autism spectrum disorders (ASD), including autism, Asperger’s disorder, and Pervasive Development Disorder — Not Otherwise Specified (PDD-NOS). Memantine has not been studied in pediatric patients under 6 years of age or over 12 years of age. Memantine treatment was initiated at 3 mg/day and the dose was escalated to the target dose (weight-based) by week 6. Oral doses of memantine 3, 6, 9, or 15 mg extended-release capsules were administered once daily to patients with weights < 20 kg, 20-39 kg, 40-59 kg and ≥ 60 kg, respectively.
In a randomized, 12-week double-blind, placebo-controlled parallel study (Study A) in patients with autism, there was no statistically significant difference in the Social Responsiveness Scale (SRS) total raw score between patients randomized to memantine (n=54) and those randomized to placebo (n=53). In a 12-week responder-enriched randomized withdrawal study (Study B) in 471 patients with ASD, there was no statistically significant difference in the loss of therapeutic response rates between patients randomized to remain on full-dose memantine (n=153) and those randomized to switch to placebo (n=158).


So if it does not work, why do researchers continue to carry out further trials, like the recent one below, including Hardan?



OBJECTIVE:

Abnormal glutamatergic neurotransmission is implicated in the pathophysiology of autism spectrum disorder (ASD). In this study, the safety, tolerability, and efficacy of the glutamatergic N-methyl-d-aspartate (NMDA) receptor antagonist memantine (once-daily extended-release [ER]) were investigated in children with autism in a randomized, placebo-controlled, 12 week trial and a 48 week open-label extension.

METHODS:

A total of 121 children 6-12 years of age with Diagnostic and Statistical Manual of Mental Disorders, 4th ed., Text Revision (DSM-IV-TR)-defined autistic disorder were randomized (1:1) to placebo or memantine ER for 12 weeks; 104 children entered the subsequent extension trial. Maximum memantine doses were determined by body weight and ranged from 3 to 15 mg/day.

RESULTS:

There was one serious adverse event (SAE) (affective disorder, with memantine) in the 12 week study and one SAE (lobar pneumonia) in the 48 week extension; both were deemed unrelated to treatment. Other AEs were considered mild or moderate and most were deemed not related to treatment. No clinically significant changes occurred in clinical laboratory values, vital signs, or electrocardiogram (ECG). There was no significant between-group difference on the primary efficacy outcome of caregiver/parent ratings on the Social Responsiveness Scale (SRS), although an improvement over baseline at Week 12 was observed in both groups. A trend for improvement at the end of the 48 week extension was observed. No improvements in the active group were observed on any of the secondary end-points, with one communication measure showing significant worsening with memantine compared with placebo (p = 0.02) after 12 weeks.

CONCLUSIONS:

This trial did not demonstrate clinical efficacy of memantine ER in autism; however, the tolerability and safety data were reassuring. Our results could inform future trial design in this population and may facilitate the investigation of memantine ER for other clinical applications.
  
Dr Chez? 

So how reliable then are Dr Chez’s other findings?  He is a "big name" in autism research.

Back in 2007 Dr Chez published a very positive study on the use of Memantine in autism. 

Memantine as adjunctive therapy in children diagnosed with autistic spectrum disorders: an observationof initial clinical response and maintenance tolerability.

 

Abstract

Autism and Pervasive Developmental Disorder Not Otherwise Specified are common developmental problems often seen by child neurologists. There are currently no cures for these lifelong and socially impairing conditions that affect core domains of human behavior such as language, social interaction, and social awareness. The etiology may be multifactorial and may include autoimmune, genetic, neuroanatomic, and possibly excessive glutaminergic mechanisms. Because memantine is a moderate affinity antagonist of the N-methylD-aspartic acid (NMDA) glutamate receptor, this drug was hypothesized to potentially modulate learning, block excessive glutamate effects that can include neuroinflammatory activity, and influence neuroglial activity in autism and Pervasive Developmental Disorder Not Otherwise Specified. Open-label add-on therapy was offered to 151 patients with prior diagnoses of autism or Pervasive Developmental Disorder Not Otherwise Specified over a 21-month period. To generate a clinician-derived Clinical Global Impression Improvement score for language, behavior, and self-stimulatory behaviors, the primary author observed the subjects and questioned their caretakers within 4 to 8 weeks of the initiation of therapy. Chronic maintenance therapy with the drug was continued if there were no negative side effects. Results showed significant improvements in open-label use for language function, social behavior, and self-stimulatory behaviors, although self-stimulatory behaviors comparatively improved to a lesser degree. Chronic use so far appears to have no serious side effects.


Making sense of Memantine

Personally, I think it likely that Memantine may indeed have a positive effect in some people with autism.  For most people it probably does no good, but no harm, so it is a harmless placebo that may make the parents feel better and gives the doctor something to prescribe.

Memantine and the very similar Galantamine probably do deserve a place in the long list of drugs and supplements that may be effective in some people.  But how great is that “effect”?  I suspect this is the problem; it is big enough for Dr Chez but not big enough for the others.

I suspect this will be a recurring problem in almost all future autism drug trials.  What is a responder?  How big an effect is a worthwhile effect?

I think a better approach would be to focus on the so-called responders identified by Dr Chez and others.  Document the claimed positive effects and then see if these effects continue when the responders are given a dummy placebo.

This is the approach I use in my trials; when I stop a therapy, I look to see if there is a change.  When you suspend an effective therapy things should get worse.

The hundreds or thousands of kids currently on Memantine should do the same; take a break and see if there is any change, be it positive or negative. 

Many people believe no valid treatments for autism exist and that those thinking otherwise are all deluded.

I think that many people are giving their kids drugs and supplements of no therapeutic value and in some cases are making the situation worse.

However, effective therapies do exist for many people with autism and they stand up to scrutiny.  The effect is apparent to third parties, like teachers and therapists, and when you stop the therapy the positive effect is lost and people notice, only to return when it is restarted.  Then you know it is not wishful thinking and at that point what the FDA says does not really matter and you do not need bother with what subsequent trials say.

So when a reader asked me what I thought about the recent “failed” trial of NAC, to treat social impairment in autism, I took a very relaxed view.  If they had identified 50 kids with classic autism and stereotypy and looked at whether NAC reduced this, I would take note.  They choose the wrong primary endpoint, social impairment, and wasted a lot of money.


A randomized placebo-controlled pilot study of N-acetylcysteine in youth with autism spectrum disorder

Conclusions
The results of this trial indicate that NAC treatment was well tolerated, had the expected effect of boosting GSH production, but had no significant impact on social impairment in youth with ASD
.
      
I only wait to see what happens when Ben Ari publishes the results of his large trial on Bumetanide.  Whatever data they choose to collect, is it going to convince the European Medicines Agency that it is an effective therapy?  I hope so, but nothing would surprise me.

I would love to know how Dr Chez rationalizes the fact that so many others cannot replicate his positive research findings.  But he keeps on going.

Rather off-topic, a recent comment on my post on Clonidine, informed us that this drug, often prescribed off-label in autism and ADHD, really is acting as a sedative to calm the person down. So no effect on core autism.  Sedation does have a role to play in some people’s disorders.  Very low doses of Mirtazapine (Remeron) are also sedating via its effect of central H1 receptors; it occurred to me that this might be a safe long term therapy for some "out of control" people with severe autism; likely safer than the usual antipsychotics. 







Wednesday 11 May 2016

Combatting Brain Calcification in Some Autism (and Bipolar and Schizophrenia) and Osteoprotegerin (OPG) as a potential biomarker, implicating Cav1.2


In today’s post there is more supposition than normal, but plenty of anecdotal evidence.  It follows on from the previous post that suggested calcification might be an issue in some types of autism.  As we know, many unrelated biological dysfunctions can lead to autism, but there do seem to be some commonly affected pathways.

This subject is definitely worthy of much more detailed study than my post, which is based on an initial review of the science.  Some leading researchers, like Persico and Courchesne are fully aware of the issue.  I am not sure who would undertake such a study.  There is no physician specialty dedicated solely to osteoporosis, so we are lacking experts.  The bone-vascular axis is worthy of more study, as much for heart disease as autism.

A variety of medical specialists treat people with osteoporosis, including internists, gynecologists, family physicians, endocrinologists, rheumatologists, physiatrists, orthopaedists, and geriatricians.  If you do not know what a physiatrist is, I also had to look it up.  Physical Medicine and Rehabilitation (PM&R) physicians, also known as physiatrists, treat a wide variety of medical conditions affecting the brain, spinal cord, nerves, bones, joints, ligaments, muscles, and tendons.
 

Overview

There is more support for the potential use of calcium channel blockers that affect Cav1.2, via its effect on calcification by modulating Osteoprotegerin (OPG).  OPG is known to be elevated in autism and its two older brothers schizophrenia and bipolar.

It appears that in some people with severe brain calcification, that shows up on CT scans, biphosphanate drugs can be helpful, but do not actually shrink the calcification, perhaps they stop it growing.

Biphosphanate drugs used to treat osteoporosis are not without side effects in some people.

Some people have disturbed calcium homeostasis as a result of drugs they are taking, for example antiepileptic drugs.

So-called “chelation” using powerful intravenous antioxidants has been shown in the TACT clinical trial to reduce future heart problems, but only in people with diabetes. Diabetics are known to have disturbed calcium homeostasis leading to calcification, heart disease and osteoporosis.

In some counties intravenous antioxidants have long been given to people with diabetes to treat its main side effects but not to clear calcification.  In those countries this is seen as perfectly safe and routine. Preventative care for diabetics is actually rather poor in the UK and US.

Vitamin K plays a key role in calcium homeostasis and in some people just giving large amounts of this vitamin has the required therapeutic effect.  Unless given alongside blood thinning drugs, it is claimed that high dose Vitamin K does not have side effects.

Perhaps the most common osteoporosis therapy, calcium plus vitamin D is shown in some trials to be of no value whatsoever.  This therapy would most likely be ill advised in autism.



Osteoprotegerin (OPG)

Osteoprotegerin (OPG) is a cytokine involved in calcification and inflammation.


Osteoprotegerin has been used experimentally to decrease bone resorption in women with postmenopausal osteoporosis.
 It has been particularly related to the increase in cardiovascular risk in patients suffering from diabetes

Interestingly it has been shown that the L type calcium channel Cav1.2 regulates Osteoprotegerin (OPG) expression and secretion.
A NASA space shuttle flight in 2001 tested the effects of osteoprotegerin on mice in microgravity, finding that it did prevent increase in resorption and maintained bone mineralization.  Space flight is not good for your bones.

Osteoprotegerin levels are elevated in people with bipolar and schizophrenia.


Osteoprotegerin levels in patients with severe mental disorders


Severe mental disorders are associated with elevated levels of inflammatory markers. In the present study, we investigated whether osteoprotegerin (OPG), a member of the tumour necrosis factor receptor family involved in calcification and inflammation, is elevated in patients with severe mental disorders.


Methods

We measured the plasma levels of OPG in patients with severe mental disorders (n = 312; 125 with bipolar disorder and 187 with schizophrenia) and healthy volunteers (n = 239).

The mean plasma levels of OPG were significantly higher in patients than in controls (t531 = 2.6, p = 0.01), with the same pattern in bipolar disorder and schizophrenia. The increase was significant after adjustment for possible confounding variables, including age, sex, ethnic background, alcohol consumption, liver and kidney function, diabetes, cardiovascular disease, autoimmune diseases and levels of cholesterol, glucose and C-reactive protein.


Conclusion

Our results indicate that elevated OPG levels are associated with severe mental disorders and suggest that mechanisms related to calcification and inflammation may play a role in disease development.



As shown in the study below, many inflammatory cytokines are elevated in autism, just look at those insulin-like growth factor binding proteins.  Osteoprotegerin is a modest 500% of what it might be expected to be in non autism.









Chelation

Because of the continuing non-debate in scientific terms about vaccines and autism, it is unlikely that there will ever be any study about calcium chelation and autism.  Rather than admit that in a small number of cases vaccination may trigger mitochondrial disease and result in autism, there is complete denial, at least in public. In private it is an open secret.

The planned chelation trial in autism was banned, on “safety grounds”.

It looks to me that the enemy is not mercury or other heavy metals, the problem is much less exotic. 


Oxidative Stress
Most people with autism have oxidative stress, which should be improved by any potent antioxidant.  Agents used to chelate metals have to be potent antioxidants.


Calcification
In some yet to be determined percentage of people they potentially have disturbed calcium homeostasis resulting in some calcium deposits in the brain.  Those chelating to remove, most likely non-existing, “toxins” may sometimes be reducing harmful calcification.



Fortunately there has been a very large study, called TACT, on de-calcification (calcium chelation) in Coronary Heart Disease.

One large group of people at risk from low bone density are those with diabetes.

Patients with diabetes, who made up approximately one third of the 1,708 TACT participants, had a 41 percent overall reduction in the risk of any cardiovascular event; a 40 percent reduction in the risk of death from heart disease, nonfatal stroke, or nonfatal heart attack; a 52 percent reduction in recurrent heart attacks; and a 43 percent reduction in death from any cause.

   

Chelation for Coronary Heart Disease


§  Patients with diabetes, who made up approximately one third of the 1,708 TACT participants, had a 41 percent overall reduction in the risk of any cardiovascular event; a 40 percent reduction in the risk of death from heart disease, nonfatal stroke, or nonfatal heart attack; a 52 percent reduction in recurrent heart attacks; and a 43 percent reduction in death from any cause. In contrast, there was no significant benefit of EDTA treatment in participants who didn't have diabetes.










From the Mayo Clinic:-

          Results of trial to assess chelation therapy (TACT) study presented



 A further review from TACT just looking at patients with diabetes:- 

The Effect of an EDTA-based Chelation Regimen on Patients with Diabetes and Prior Myocardial Infarction in TACT



Patients with diabetes:-









Patients without diabetes (no benefit over placebo):-





Treatment

The 10 component 500 mL intravenous solution in TACT consisted of 3 g of disodium EDTA, adjusted downward based on estimated glomerular filtration rate; 7 g of ascorbic acid; 2 g of magnesium chloride; B-vitamins, and other components (eTable 4). The placebo solution consisted of 500 mL of normal saline and 1.2% dextrose (2.5 g total). The solution was infused over at least 3 hours through a peripheral intravenous line weekly for 30 weeks and then biweekly to bimonthly to complete 40 infusions.



Background

The Trial to Assess Chelation Therapy (TACT) showed clinical benefit of an ethylene diamine tetraacetic acid (EDTA-based) infusion regimen in patients 50 years or older with prior myocardial infarction (MI). Diabetes prior to enrollment was a pre-specified subgroup.

Methods and Results

Patients received 40 infusions of EDTA chelation or placebo. 633 (37%) had diabetes (322 EDTA, 311 placebo). EDTA reduced the primary endpoint (death, reinfarction, stroke, coronary revascularization, or hospitalization for angina) [25% vs 38%, hazard ratio (HR) 0.59, 95% confidence interval (CI) (0.44, 0.79), p<0.001] over 5 years. The result remained significant after Bonferroni adjustment for multiple subgroups (99.4% CI (0.39, 0.88), adjusted p=0.002). All-cause mortality was reduced by EDTA chelation [10% vs 16%, HR 0.57, 95% CI (0.36, 0.88) p=0.011], as was the secondary endpoint (cardiovascular death, reinfarction, or stroke) [11% vs 17% HR 0.60, 95% CI (0.39, 0.91), p=0.017]. After adjusting for multiple subgroups, however, those results were no longer significant. The number needed to treat to reduce one primary endpoint was 6.5 over 5 years (95% CI (4.4, 12.7). There was no reduction in events in non-diabetics (n=1075, p=0.877), resulting in a treatment by diabetes interaction (p=0.004).

Conclusions

Post-MI diabetic patients age 50 or older demonstrated a marked reduction in cardiovascular events with EDTA chelation. These findings support efforts to replicate these findings and define the mechanisms of benefit. They do not, however, constitute sufficient evidence to indicate the routine use of chelation therapy for all post-MI diabetic patients.





Effect of the Polypill on Calcification

Oral antioxidants like NAC and Alpha lipoic Acid given daily will have both a direct and indirect “chelating” effect.

Alpha-Lipoic Acid Promotes Osteoblastic Formation in H2O2 -Treated MC3T3-E1 Cells and Prevents Bone Lossin Ovariectomized Rats.

 

Alpha-lipoic acid (ALA), a naturally occurring compound and dietary supplement, has been established as a potent antioxidant that is a strong scavenger of free radicals. Recently, accumulating evidences has indicated the relationship between oxidative stress and osteoporosis (OP). Some studies have investigated the possible beneficial effects of ALA on OP both in vivo and in vitro; however, the precise mechanism(s) underlying the bone-protective action of ALA remains unclear. Considering this, we focused on the anti-oxidative capacity of ALA to exert bone-protective effects in vitro and in vivo. In the present study, the effects of ALA on osteoblastic formation in H(2)O(2) -treated MC3T3-E1 pre-osteoblasts and ovariectomy (OVX)-induced bone loss in rats were investigated. The results showed that ALA promoted osteoblast differentiation, mineralization and maturation and inhibited osteoblast apoptosis, thus increasing the OPG/receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) ratio and leading to enhanced bone formation in vitro and inhibited bone loss in vivo. Further study revealed that ALA exerted its bone-protective effects by inhibiting reactive oxygen species (ROS) generation by down-regulating Nox4 gene expression and protein synthesis and attenuating the transcriptional activation of NF-κB. In addition, ALA might exert its bone-protective effects by activating the Wnt/Lrp5/β-catenin signaling pathway. Taken together, the present study indicated that ALA promoted osteoblastic formation in H(2)O(2) -treated MC3T3-E1 cells and prevented OVX-induced bone loss in rats by regulating Nox4/ROS/NF-κB and Wnt/Lrp5/β-catenin signaling pathways, which provided possible mechanisms of bone-protective effects in regulating osteoblastic formation and preventing bone loss. Taken together, the results suggest that ALA may be a candidate for clinical OP treatment.



Statins are known to promote bone health.

Statins and osteoporosis:new role for old drugs.


Osteoporosis is the most common bone disease, affecting millions of people worldwide and leading to significant morbidity and high expenditure. Most of the current therapies available for its treatment are limited to the prevention or slowing down of bone loss rather than enhancing bone formation. Recent discovery of statins (HMG-CoA reductase inhibitors) as bone anabolic agents has spurred a great deal of interest among both basic and clinical bone researchers. In-vitro and some animal studies suggest that statins increase the bone mass by enhancing bone morphogenetic protein-2 (BMP-2)-mediated osteoblast expression. Although a limited number of case-control studies suggest that statins may have the potential to reduce the risk of fractures by increasing bone formation, other studies have failed to show a benefit in fracture reduction. Randomized, controlled clinical trials are needed to resolve this conflict. One possible reason for the discrepancy in the results of preclinical, as well as clinical, studies is the liver-specific nature of statins. Considering their high liver specificity and low oral bioavailability, distribution of statins to the bone microenvironment in optimum concentration is questionable. To unravel their exact mechanism and confirm beneficial action on bone, statins should reach the bone microenvironment in optimum concentration. Dose optimization and use of novel controlled drug delivery systems may help in increasing the bioavailability and distribution of statins to the bone microenvironment. Discovery of bone-specific statins or their bone-targeted delivery offers great potential in the treatment of osteoporosis. In this review, we have summarized various preclinical and clinical studies of statins and their action on bone. We have also discussed the possible mechanism of action of statins on bone. Finally, the role of drug delivery systems in confirming and assessing the actual potential of statins as anti-osteoporotic agents is highlighted.



Verapamil via the effect on OPG should have positive effect on bones and reduce vascular calcification.



Use of Biphosphanate Drugs to Treat Brain Calcification



Brain calcification might be associated with various metabolic, infectious or vascular conditions. Clinically, brain calcification can include symptoms such as migraine, Parkinsonism, psychosis or dementia. The term Primary Brain Calcification was recently used for those patients without an obvious cause (formerly idiopathic) while Primary Familial Brain Calcifications was left for the cases with autosomal dominant inheritance. Recent studies found mutations in four genes (SLC20A2,PDGFRB, PDGFB and XPR1). However, these genes represent only 60% of all familial cases suggesting other genes remain to be elucidated. Studies evaluating treatments for such a devastating disease are scattered, usually appearing as single case reports. In the present study, we describe a case series of 7 patients treated with Alendronate, a widely prescribed biphosphanate. We observed good
tolerance and evidence of improvements and stability by some patients. No side effects were reported and no specific symptoms related to medication. Younger patients and one individual continuing a prescription (prior to study commencement) appeared to respond more positively with some referred improvements in symptoms. Biphosphanates may represent an excellent prospect for the treatment of brain calcifications due to their being well tolerated and easily available. Conversely, prospective and controlled studies should promptly address weaknesses found in the present analysis.



Patient 3. A 43-year-old man, one of seven children born to the same mother (described below as Patient 4), presented with rapid progression of parkinsonism. In the last 5 years, a progressive presentation of general bradykinesia, rigidity, and paresis in the right arm had developed. He had previously been an active individual with regular employment. Prior to recruitment, this patient had been on carbidopa/levodopa, which was continued throughout the duration of the present study. Genetic screening identified a SLC20A2 mutation (c.1483 G > A)3, and the patient was placed on alendronate therapy.

Patient 4. This 84-year-old woman presented with mild depression, late-stage parkinsonism, and large calcifications (10.85 cm3) in the basal ganglia and cerebellum. She is the mother of Patient 3 and carries the same SLC20A2 mutation. This patient had been taking alendronate for 10 years due to a diagnosis of osteoporosis. Intriguingly, she presented with fewer symptoms than her son, despite being 41 years old older.


We chose alendronate due to its availability, safety, and comfortable dosing schedule (oral administration, once a week). Etidronate probably works via a different mechanism (bulk action binding to hydroxyapatite) than
the newer amino bisphosphonate alendronate (inhibition of osteoclasts). This might explain why the effects seen in our series were less dramatic than those seen in patients treated with etidronate. Thus, while alendronate has a more convenient dosing schedule and, possibly, fewer side effects, a larger clinical trial should consider the choice of bisphosphonate carefully.

To date, there is no specific treatment for primary brain calcification; the main goal is symptom management.

Clinicians should make sure that the idiopathic/primary profile is accurately defined to rule out any underlying organic cause, e.g., in non-idiopathic basal ganglia calcification caused by abnormal calcium regulation, such as in primary endocrine disorders.

Bisphosphonates represent the only effective (although still anecdotal) treatment that could have wider applications in basal ganglia calcification. Prospective, controlled studies should be conducted to address the weaknesses of the present manuscript and establish a definitive analysis of bisphosphonate therapy for primary brain calcification. Furthermore, the excellent tolerability profile of alendronate in primary brain calcifications suggests that a trial in asymptomatic patients could help address the potential benefit of this strategy to control symptoms in younger patients.

Conclusion

Bisphosphonates may be applicable, safe and change the natural progression of primary brain calcifications, especially in younger patients and across prolonged periods. Nevertheless, future studies with adequate design should answer remaining questions.



Metabolic Bone Diseases

There are numerous things that can affect the bone-vascular axis including various  metabolic diseases.  This is rather beyond the scope of an autism blog, but if you are interested here is a link.

Imaging Findings and Evaluation of Metabolic Bone Disease





Conclusion

Unless you have evidence of osteoporosis, or a brain scan showing calcification, it might be rather extreme to take a biphosphanate drug like Fosamax.

If you already take oral NAC , ALA or L-carnitine you have a pretty potent therapy which would target any calcification, if indeed it existed.  Intravenous ALA, as used my Monty’s Grandad for years, should be even more effective as it is for diabetic neuropathy.

Those using verapamil appear to have another layer of protection against calcification. I did suggest to Agnieszka that elevated OMG might indeed be the biomarker needed for the use of verapamil in Autism. Remember to contact her to participate in her study.

Verapamil use in Autism – Request for Case Reports from Parents



Vitamin K2 is claimed to be extremely safe unless you are taking a blood thinning drug like Warfarin, that are Vitamin K antagonists.

Some studies claim great results from K2, while some others are more mixed.  It is likely that depending on what underlying dysfunction exists, high dose K2 may help or do nothing.  It is clear that low amounts of K2 are damaging.

So K2 would seem worthwhile trialing.  It is found in the not so pleasant tasting Natto.  Vitamin K (more K1 than K2) is found in broad-leafed vegetables.  The excellent Linus Pauling Institute reviewed all the vitamin K evidence and concluded people should:-

 “eat at least one cup of dark green leafy vegetables daily”


This brings me back to where I started the previous post with the Mediterranean diet, rich in dark green leafy vegetables.

Intravenous infusion of antioxidants looks like a very good idea for people with diabetes.  Where we live this has been standard practice for years, where Monty’s grandad goes twice a year for 10 days of ALA infusion, the rest of the year he is prescribed oral ALA.  This is given to control diabetic neuropathy, but clearly a side effect is that it will reduce the likelihood of a heart attack or stroke.

I have no doubt IV infusion of ALA would be beneficial for some with autism, but I think they might get sufficient benefit from oral ALA or indeed NAC.

I wish the FDA would permit the “chelation” autism trial in the US, I have no doubt it would show a positive effect, but not for the reasons put forward by DAN doctors and the chelation cults. 

The TACT chelation trial in older people showed that the therapy was very well tolerated.  IV ALA therapy is also well tolerated.

Public health officials should not fear the truth.  In the long run the truth is the best policy and when given all the facts the public are not stupid.  If vaccination is in the interest of their child, enough parents will happily cooperate. The Herd Immunity Threshold (HIT) is the percentage of people who need to be vaccinated.  HIT is 95% for measles.  Therapies used at Johns Hopkins exist to minimize the possible damaging effect on mitochondria and never give paracetamol/acetaminophen to children after a vaccination.