UA-45667900-1

Saturday 13 November 2021

From PANS to PANDAS? Another Problem Solved

 

Source: EpiphanyASD

 

There is a lot written about PANS (Pediatric Acute-onset Neuropsychiatric Syndrome) and PANDAS (Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections) which is a subset of PANS; however they are still not fully recognized as medical conditions.

I prefer to see PANS/PANDAS in the broader context of autoimmune encephalitis, a collection of related conditions in which the body's immune system mistakenly attacks the brain, causing inflammation. The immune system produces antibodies that mistakenly attack heathy receptors in the brain.  Depending on which types of receptors are targeted, you will get different symptoms, plus you will get symptoms from the inflammation.

If they are NMDA receptors, you may have hallucinations and appear to have developed schizophrenia overnight.

It has been suggested that the definition of PANS is too narrow and a broader term called CANS was proposed.  CANS is not exactly the same as PANS.  PANS is the popular term in the US.

“A 2011 paper by Singer proposed a new, "broader concept o childhood acute neuropsychiatric symptoms (CANS)", removing some of the PANDAS criteria in favor or requiring only acute-onset. Singer said there were "numerous causes for CANS", which was proposed because of the "inconclusive and conflicting scientific support" for PANDAS, including "strong evidence suggesting the absence of an important role for GABHS, a failure to apply published [PANDAS] criteria, and a lack of scientific support for proposed therapies".

Moving from PANDAS to CANS (pay-walled)

I do not see why the focus is always on children, because we know that adults can also be affected.

In children and adults with autism it seems that quite often they may suddenly develop verbal or motor tics, as the obvious symptom of autoimmune encephalitis.  These tics gradually disappear when treated with a short course of oral steroids.

One point emphasized by the likes of Susan Swedo, at the US National Institute of Mental Health, is that PANS/PANDAS is not autism.

Non-autistic children can develop PANS/PANDAS, but so can autistic people.

A non-autistic child with untreated PANS/PANDAS would appear to most people as autistic, so similar are the symptoms.

An adult with NMDA receptors encephalitis will very likely be diagnosed as schizophrenic.

The autistic person who develops PANS/PANDAS appears like an autistic person who has encountered a regression. Many of the symptoms of PANS/PANDAS are common symptoms of autism, so the onset of PANS/PANDAS may just look like the already present symptoms have gotten worse.

Susan Swedo has commented that there is nothing to suggest PANS/PANDAS is more common in children with autism. She states that PANS/PANDAS is a condition of onset in early childhood, which is likely to reoccur when re-exposed to the same trigger, but reoccurrence is much less of a risk after 21 years old.

I think most cases of PANS/PANDAS in people with severe autism are never diagnosed and so never treated.  It is just put down as an autistic regression.  How many of those adults with severe autism and extremely challenging behaviors fall into this category?  Given the enormous cost, up to half a million dollars a year, to house this type of person in a care facility with 24-hour support, you would think a little bit more effort should be given to early diagnosis and treatment.

 

A Sceptical World

One of our neurologist readers commented in this blog about how she successfully treated her child’s PANS episode, even though in her country PANS does not exist as a diagnosis and her colleagues at work had no idea how to treat it. Quick intervention required only minor treatment.

In some countries with free universal healthcare, you only get to diagnose and treat PANS if you go outside that system and pay extra.

In the US there are some pretty expensive tests proposed for PANS and CANS.

In mainstream medicine PANS/PANDAS are not generally accepted as conditions and yet Stanford University has had a PANS/PANDAS clinic for a decade.

https://med.stanford.edu/pans/about.html

 

Time for detective work

 



The usual issue I have to manage in spring/summer is what I call summertime raging and dumber in the summer.  Note that a cognitive regression is a very common symptom of PANS/PANDAS.

My solution to summertime raging and dumber in the summer revolves around allergy, mast cells and reducing pro-inflammatory cytokines.

This year some new symptoms developed after summer:

·        Sensory amplification, in the form of sound sensitivity

·        Clinginess to Mum/Mom and separation anxiety

·        Hair twirling, using fingers to twist hair

·        Nail picking, the medical term is Onychotillomania

·        General anxiety

·        Increased urinary frequency, not due to a UTI (urinary tract infection)

·        Aggression and reactive rage (as opposed to predatory rage)

·        Mood disorder, crying for no apparent reason at school and home 

All the above symptoms can be passed off as autism.

Sound sensitivity is a common problem in autism, but Monty was getting so sensitive to sounds that he could not tolerate sitting next to someone eating at home. At school, where it is very noisy, this was not a problem.

Clinginess to Mum/Mom rather merged with the aggression and reactive rage symptoms.  Aggression is a very common problem in severe autism and it is usually directed mainly at Mum.  This time it was not just behaviors, but talking in advance about potential aggressive behaviors, this was new and got worse and worse.

Hair twirling has occurred before and is a common expression of anxiety, which then just becomes a habit, like a stim or tic.  This was previously resolved by a haircut.  This time the short hair did not solve the issue.

Nail picking (Onychotillomania) is when use your index finger to pick at the cuticle on your thumb and end up tearing the skin. This is rather like compulsive hair pulling (Trichotillomania) which is a common feature of OCD (obsessive compulsive disorder).  NAC is used to treat Trichotillomania. 

Anxiety is nearly always an issue in all levels of autism. 

The urinary symptoms of PANS/PANDAS are something that I had not paid attention to earlier. 

We covered polydipsia, drinking too much water, in a special post. This is a big problem for some readers of this blog. 

Thirst – Too much or too little (Polydipsia and Hypodipsia) Vasopressin and Angiotensin

People taking Bumetanide for autism will drink a lot, but should do so only in the few hours after taking the therapy, not all day long.

Autistic people with polydipsia are at risk of death due to low sodium levels (hyponatremia).

Monty was drinking so much I was giving him additional sodium and potassium.

Children with autism often use toilet breaks as an escape from whatever task they have been given.  Monty’s assistant had commented on how he seemed to be trying to escape from her.

The mood disorder was very marked and on one occasion Monty cried at school; his classmates were worried about him and did their best to comfort him.  This had never happened before and there was no apparent trigger. The same thing happened at home a few times, normally in the evening.

After a gradual worsening of the above symptoms, Monty had a viral infection, and he informed us that he had a sore throat. Behaviors then got significantly worse and he had a week off school, more for the behaviours than for the mild flu-like symptoms.  Having then announced that his ear was hurting, we took him to the Ear Nose and Throat doctor. To get to see the doctor you first have to go and get a negative Covid test. The diagnosis was a mild ear infection that might not need an antibiotic, but if it got worse take the antibiotic (Cefpodoxime). This is a β-lactam antibiotic. 

We did cover the non-antibiotic properties of this class of antibiotic in a dedicated post, since many antibiotics have profound anti-inflammatory and other effects not related to killing bacteria.  You can never know with 100% certainty which effect is giving you the benefit.

 

Autism and Non-Antibiotic Properties of Common Beta-lactam Antibiotics

 

 



For anyone interested in trivia. The aerobic mold which forms the basis of this antibiotic, cephalosporin C, was found in the sea near a sewage outfall by Cagliari harbour in Sardinia, by the Italian pharmacologist Giuseppe Brotzu in July 1945. 

If you like sandy beaches like Monty, Sardinia is a great place to visit. Cagliari is in the south, the famous part of Sardinia is Costa Smeralda, on the northern coast, where the celebs go to be seen.

Since Monty’s problem was more behavioral than due to pain in his ear, we started the antibiotic without delay.

Over 5 days, the behaviors began to improve and on day 6 the hair twirling vanished entirely for a day, so clearly something new was going on in his brain.

The mood disorder switched to occasional extreme laughter/happiness, rather than the previous tears.

The behavioral regression started well before the viral infection and ear infection, so it is not just a simple case of a sore throat and a strep infection.

Are all the above symptoms due to PANS/PANDAS?

There actually is a 100% overlap between Monty’s recent symptoms and a list of possible PANS/PANDAS symptoms. Every symptom I listed is on the doctor’s checklist below: -

 

Description of PANS Symptoms

 

Description of PANS Symptoms

1) OCD

Traditional OCD presents with mild obsessions and compulsions that become more involved and burdensome over time. In traditional OCD, symptoms tend to be persistent with minor variance in symptoms (often referred to as a waxing and waning). In contrast, PANS OCD presents with a sudden onset typically from mild or no symptoms to debilitating in an abrupt amount of time. Often, parents recall the exact date of symptom onset, and frequently report “it just came on out of the blue.”

 

Many compulsions are either mental rituals (and therefore difficult to observe) or appear as extremes of an acceptable behavior (e.g., compulsive handwashing). Common OCD rituals in children include: washing/grooming, checking (locks, door), counting, ordering/symmetry, hoarding, restrictive eating, and repetitive questioning.

 

Emerging research suggests different treatment options are available for children with PANS OCD than for children with non-PANS OCD. Understanding the difference between the two forms of OCD allows appropriate interventions to be implemented.

 

2) Eating Restriction

PANS children describe various reasons for not eating normally or adequately, such as: fear of vomiting, sensitivity to taste, smell, and texture, fear food is spoiled, or fear of being poisoned. In some cases, the restricted eating is directly related to body image distortions, including concerns about being overweight (even when the child is normal weight and was previously satisfied with their body habitus.)

 

3) Anxiety

Anxiety frequently presents as constant, generalized anxiety or age-inappropriate separation anxiety.

 

4) Sensory Amplification

PANS children may become uncharacteristically and intensely bothered by smells, tastes, sounds, and textures, causing difficulties with daily routines, such as brushing teeth, riding in a car, eating, and dressing.

 

5) Motor Abnormalities

PANS children may exhibit motor and vocal tics, handwriting changes and/or clumsiness.

 

6) Behavioral Regression

PANS children may display regressed behaviors, such as: baby talk, refusal to carry out age-appropriate grooming activities, tantrums, clinginess, and/or separation anxiety.

 

7) Deterioration in School Performance

Psychological testing of children with PANDAS, a subset of PANS where strep is the infectious trigger, has found impairments on a visual-spatial recall test, on measures of executive function, and on a dexterity test. PANS children may also experience a decreased processing speed, memory issues, and/or difficulty in math and calculation.

 

8) Mood Disorder

Depression, mania, irritability, hypersexuality, emotional lability, and rage have been noted during a PANS exacerbation. Moods may change from happy to sad to angry in moments. Reactive rage (as oppose to predatory rage) may start instantaneously and stop as quickly, leaving the child remorseful and confused.

 

9) Urinary Symptoms

An initial complaint may be urinary frequency. A careful history will often expose additional symptoms. PANS children may develop polyuria (up to many times per hour), frequent urges to urinate, and/or day and night secondary enuresis. These urinary symptoms are not due to UTI, anxiety or OCD type worries.

 

10) Sleep Disturbances

Polysomnography has demonstrated a variety of sleep abnormalities in children with PANS, including initial and middle insomnia, REM behavior disorder, parasomnias, and/or sleep phase shifting. 

 

Since I did introduce the term CANS, here is a comparison of PANDAS, PANS and CANS from a recent Italian paper:- 


CANS: Childhood acute neuropsychiatric syndromes

 

Table 1 - Criteria for PANDAS, PANS, and CANS 

 

PANDAS

1. Presence of OCD and/or a tic disorder

2. Pediatric onset (Symptoms of the disorder first become evident between 3 years of age and the puberty.)

3. Episodic course of symptom severity Abrupt onset of symptoms or dramatic symptom exacerbations. Often, the onset of a specific symptom exacerbation can be assigned to a particular day or week, at which time the symptoms seemed to ‘‘explode’’ in severity. Symptoms usually decrease significantly between episodes and occasionally resolve completely between exacerbations.

4. Association with Streptococcal infection Symptom exacerbations must be temporally related to Streptococcal infection

5. Association with neurological abnormalities During symptom exacerbations, patients will have abnormal results on neurological examination. Motor hyperactivity and adventitious movements

 

PANS

1. Abrupt, dramatic onset of OCD or severely restricted food intake

2. Concurrent presence of additional neuropsychiatric symptoms, with similarly severe and acute onset, from at least two of the following seven categories

1) Anxiety

2) Emotional lability and/or depression

3) Irritability, aggression and/or severely oppositional behaviors

4) Behavioral (developmental) regression

5) Deterioration in school performance

6) Sensory or motor abnormalities

7) Somatic signs and symptoms, including sleep disturbances, enuresis or urinary frequency.

3. Symptoms are not better explained by a known neurologic or medical disorder (Such as Sydenham's chorea, systemic lupus erythematosus, Tourette disorder, or others).

  

Idiopathic CANS

Acute onset before age 18 of behavioral and motor signs encompassing

1. Primary criterion OCD

2. Secondary criteria

1) Anxiety

2) Psychosis

3) Developmental regression

4) Sensitivity to sensory stimuli

5) Emotional lability

6) Tics

7) Dysgraphia

8) Clumsiness

9) Hyperactivity

3. Mono- or polyphasic cours




Treatment

Susan Swedo advises to treat PANDAS with 3 weeks of antibiotics.

Monty’s 2 previous cases of sudden onset motor/verbal tics were resolved by 5 days of Prednisone.  This is a common therapy for a PANS flare-up.  There is a study from Stanford on its benefit.  The sooner you use this therapy, the greater the benefit.

The most important thing with all forms of autoimmune encephalitis seems to be speedy treatment so the condition does not become chronic.  Then you have to use much more invasive and expensive therapies like IVIG and Plasmapheresis.

It is clear that PANS/PANDAS is likely to reoccur.

In Monty’s case the first two instances were very similar.  They were both acute onset tics. The third instance was very different.

Given that Monty’s antibiotic very obviously had a behavioral benefit, we will follow Swedo’s advice and continue for 3 weeks, which is 2 weeks longer than the standard ear infection therapy.

The short course of Prednisone will hopefully complete the therapy and life will go back to normal.

I recall that our neurologist reader, with those sceptical colleagues, did not even need steroids to resolve her child’s problems, NSAIDs were sufficient.  The sooner you treat the symptoms, the less potent the therapy needs to be and the more effective it seems to be.  Some people commence treatment years after the symptoms emerge.

 

Conclusion

One conclusion to this post might have been along the lines of “My god, whatever next?” as if autism brings never-ending problems.

I rather see it as, why did it take me so long to recognize the symptoms?

The answer to that one is that PANS/PANDAS/CANS, or indeed the broader Autoimmune encephalitis, is a family of conditions.  Just because you saw one set of broad symptoms earlier, does not mean you will not face a different subset of symptoms next time.

The urinary symptoms of PANS were a surprise and worth highlighting.

Autistic regressions should be investigated and treated.

On the one hand, doctors, particularly in the US, do like expensive diagnostic tests.  They want certainly and often struggle to treat ill-defined conditions that they have not been taught about.  They prefer not to tinker around, in fact tinkering is frowned upon.

On the other hand, when very expensive testing is done and it identifies in someone a combination of rare genetic dysfunctions associated with autism, nobody thinks to look up each gene and see how to compensate for the usual loss of function - that does not seem to count as medicine.  The genetic diagnosis is crystal clear, but the therapy would definitely require some tinkering around, to perfect it.  But, such tinkering is so frowned upon that the “specialist” just stands well clear and moves on to the next patient.   

Tinkering around is an essential part of fixing practical problems.

In my case of autism, I have not paid $925 for the Cunningham Panel of PANS/PANDAS tests, or even a strep test, or a urine culture test.

The cost of treating the 2 apparent PANS episodes in previous years was about $5 dollars each time.  The cost of the current episode was more, about $15, plus the cost of a visit to the ENT doctor and the required Covid test.  Our neurologist reader likely spent even less for her NSAIDs.

PANDAS, PANS, CANS or just autoimmune encephalopathy, it does not really matter what you call it, prompt intervention will likely resolve the symptoms.





 

Tuesday 26 October 2021

Suramin - Why do Clinical Trials in Autism Struggle to be Convincing? And Oxytocin fails in a large trial.

 

Results from the PaxMedica trial of Suramin


For me, Bumetanide for Autism is now ten-year-old news, for us it has been working since 2012; the next interesting drugs in the pipeline include Suramin and Leucovorin.

It is extremely difficult to trial Suramin at home, or indeed anywhere, and this makes it ever more desirable to many parents.

Leucovorin (calcium folinate) is easy to obtain; you can even buy liquid calcium folinate from iHerb.  You can find out pretty quickly if it produces a profound benefit on your child’s type of autism.

I wish Dr Frye and Professor Ramaekers good luck with the phase 3 trial of Leucovorin.  It certainly works for our adult reader Roger, but not for my 18 year old son, Monty.  Our reader SB’s child recently joined the group of confirmed responders.

After I started writing this post, the results came in of a large (250 children) trial of intranasal oxytocin.  This trial failed to show any benefit, over the placebo, in increasing social behaviors in autistic children. As I have mentioned previously, there is an inherent problem with intranasal oxytocin, the hormone has a very short action, its half-life is 2-6 minutes. It would be much more effective to provide a sustained release of oxytocin, which can indeed be achieved via adding a specific bacterium to the gut. The other problem with intranasal delivery is that you are not supposed to inhale the drug into your lungs, it has to stay in upper part of your nose. How likely is it that parents/children use the spray correctly?  There is even a special dispenser developed for drug delivery to the brain, but did they use it?

In my trials of L. reuteri DSM 17938 it was obvious that the oxytocin improved social behaviors, but I concluded that this was not such a big deal and certainly was not a treatment priority. How would you assess the effect? Very simple, you just count how many times your child is shaking boys’ hands and kissing the girls. I don’t suppose that was the measurement that Duke University used.

Many parents do use Syntocinon nasal spray and this failed trial does not mean they are imagining the effects.  If I was them, I would try L. reuteri DSM 17938 and compare the effect and use whichever is the most beneficial.

  

Suramin 

Suramin is moving towards its Phase 3 clinical trials and, very unusually, two different companies are trying to commercialize the same drug.  One company is PaxMedica and the other is Kuzani, who are ones that cooperate with Dr Naviaux.

In the background is Bayer, the German giant, who have been making Suramin for a hundred years as a therapy for African sleeping sickness and river blindness.  We are told that making Suramin is quite difficult, it is a large molecule; but if they could make it a century ago, how difficult can it really be?  The reality appears to be that Bayer do not want to supply PaxMedica or Kuzani and so they will have to figure out how to make it.  Suramin is sold as a research chemical, but there seem to be questions about its purity. The very cheap Suramin sold on the internet is very likely to be fake.

Today we will look at the data from the South African trial carried out by PaxMedica and take a look at their patent for their intranasal formulation.

We have heard very positive anecdotal reports from the very small initial trials carried out by Professor Naviaux.  Naviaux himself is very interesting, because even though he is not an autism researcher, he is far more knowledgeable than almost all of them on the subject of autism. If you read his papers, they show a rare global understanding of the subject.  This “big picture” is what you need to understand such a heterogenous condition as autism.

In the PaxMedica trial, 44 children completed the trial, so that should be enough to tell us something insightful about whether this drug is effective.

A recurring problem in all autism trials is how well the placebo performs.  Here again in the Paxmedica data we have a very impressive blue line – the placebo.  It is just salt and water and yet it is nearly as good as the trial drug (the orange line).

 


A big part of clinical trials is the statistics used to validate them.

Although I do have a mathematical background, I believe in “seeing is believing”.  The data should be crying out to you what it means.  If it is so nuanced that it needs a statistician to prove the effect, there likely is no effect.

In the above chart we want to see a decreasing slope that would possibly level off as the drug achieved its maximum effect.

What we see are two apparently effective therapies, blue and orange. 

The problem is that blue line is just water, with a bit of salt.

 

Show me the data

What we really want to see are results of each of the 44 participants, not the average.

There are likely groups:

·        Super responders

·        Responders

·        Partial responders

·        Non-responders

 

No statistician is needed.

 

The data from the Suramin trial needs to be presented in the kind of form used in the stem cell trial below:-



Since many hundreds of different biological conditions can lead to an autism diagnosis, we really should not expect there to be any unifying therapy that works for everyone.  Indeed, we should perhaps be suspicious of any therapy claimed to work for everyone.

We always get to hear about the super-responders in anecdotal reports.

We heard great things about Memantine/Namenda, but the phase 3 trial was a failure.  We heard great things about Arbaclofen (R-Baclofen), but the phase 3 trial failed. In Romania our reader Dragos is currently seeing great benefits from the standard version of Baclofen (a mixture of R-Baclofen and S-Baclofen).

My son is a super-responder to Bumetanide, but I know that most people are not. However, when I came across the “bumetanide has stopped” working phenomena, it became clear that the situation is more complex than a single one-time evaluation. We know why bumetanide can “stop working” and how to make it “start working again”.  An increase in inflammatory cytokines from the periphery (i.e. outside the brain) further increases the expression of NKCC1 in the brain and negates the effect of bumetanide; reduce the inflammation and bumetanide will start to work again.

  

Why does the placebo always do well in autism trials?

The assessments used to measure outcome are all observational, they are not blood tests or MRI scans.  They are highly subjective.

It has been suggested that just being in an autism trial improves symptoms of autism.  The parents give more attention to the child and this then skews the results.

My way round this problem in my n=1 trials was always to tell nobody about the new trial I was making and wait for unprompted feedback.  This works really well.

 

 

Who chooses the trial goal (the primary endpoint)?

I like the fact that in the Leucovorin trial the goal is speech.  It is a very simple target and relatively easy to measure.

For Bumetanide, I did suggest to the researchers that they used change in IQ as an endpoint.  Nice and simple, start with kids with IQ<70 and then recruit those who have a negative reaction (paradoxical response) to Valium/diazepam.  Then expect an increase in measured IQ of 10 to 40 points.  Then you would have a successful phase 3 trial.    

In many previous trials that ultimately failed, some people did see a benefit, but they were different benefits.  I did get a reader telling me how great Memantine (Namenda) had been for her child, when I asked why she told me that it was the only therapy that had ever solved her child GI problems.  That certainly was never considered as a trial goal/endpoint.

In my trial of Pioglitazone, I read the research about both the mechanism of action and the observed effects listed in the phase 2 trial:

"improvement was observed in social withdrawal, repetitive behaviors, and externalizing behaviors as measured by the Aberrant Behavior Checklist (ABC), Child Yale-Brown Obsessive Compulsive Scale (CY-BOCS), and Repetitive Behavior Scale–Revised (RBS-R)."

I was targeting something entirely different.  Based on the mechanism of action, specifically the reduction of the inflammatory cytokine IL-6, I expected a reduction in summertime raging.  It worked exactly as hoped for. This is the second summer we have used it.

Our reader Sara’s initial assessment of the effect of Pioglitazone is focused on the improvement in sleeping patterns.  This is great, assuming the benefit is maintained, but it is an entirely different benefit.

 

Was the trial drug actually taken?

I suspect in the bumetanide trial, many parents did not give the trial drug every day, as per their instructions, because the diuresis was too much bother.  I know from reader comments and emails that many parents stop giving bumetanide, even though their child is a responder.  Some schools refuse to allow bumetanide because of the disruption caused by frequent toilet breaks.

Because Suramin is given once a month by infusion, there is 100% certainty that the drug or placebo was actually taken.  This is a big plus.

Was the intranasal oxytocin correctly administered in the recent trial? I doubt it.

The problem with Leucovorin is that in a minority of children is causes aggression, even if you follow Prof Ramaeker’s advice and very slowly increase the dosage.  In the phase 3 trial parents should be informed of this possibility and told to report it and be invited to withdraw from the trial.  If they just stop the therapy to halt the aggression, but their data remains included in the study, the results are invalidated.

 

Intranasal Suramin

Patents are often a good source of information and they do also tell you something about the people who wrote them.

Here below is PaxMedica's patent for intranasal suramin:-


Compositions and methods for treating central nervous system disorders

These results demonstrate that an antipurinergic agent such as suramin can be delivered intranasally to achieve plasma and brain tissue levels and that variations in the brain tissue to plasma partitioning ratio can be observed. These results demonstrate that an antipurinergic agent such as suramin can be delivered to the brain of a mammal by intranasal (IN) administration. 

The following Table 1 provides the averaged accumulated amount, in mg, of suramin that has penetrated as a function of time


But how can the accumulated level after 6 hours be less than after 5 hours?


The results of the study are also shown graphically in FIG. 1 where the cumulative amount (mg) of drug permeated was plotted versus time in hours. These data demonstrate that Formulation B containing methyl β-cyclodextrin (methyl betadex) provides significantly better penetration, versus Formulations, A , C, and D in the tissue permeation assay. Also, as is seen from a comparison of Formulations A and D, having a higher drug concentration can be advantageous to increasing permeation.

 

Formulation A - suramin hexa-sodium salt at 100 mg/mL in water (no excipients) Formulation B - suramin hexa-sodium salt at 100 mg/mL in water, with 40% methyl β-cyclodextrin (methyl betadex) Formulation C - suramin hexa-sodium salt at 100 mg/mL in water, with 40% HP (hydroxyl propyl) -cyclodextrin Formulation D - suramin hexa-sodium salt at 160 mg/mL in water (no excipients)

 



FIG. 7 shows a plot comparing the total percentage of suramin in plasma in mice when administered by intraperitoneal (IP) injection once weekly for 4 weeks (28 days), intranasally (IN) daily for 28 days, intranasally (IN) every other day for 28 days, and intranasally (IN) once per week for 4 weeks (28 days).

 


FIG. 8 shows a plot comparing the total percentage of suramin in brain tissue in mice when administered by intraperitoneal (IP) injection once weekly for 4 weeks (28 days), intranasally (IN) daily for 28 days, intranasally (IN) every other day for 28 days, and intranasally (IN) once per week for 4 weeks (28 days).

 

Does anyone think the above chart makes any sense? 

 

The mice were maintained in group cages (6 mice per cage based on treatment group) in a controlled environment (temperature: 2 1.5 ± 4.5 °C and relative humidity: 35-55%) under a standard 12-hour light/1 2-hour dark lighting cycle (lights on at 06:00). Mice were accommodated to the research facility for approximately a week. Body weights of all mice were recorded for health monitoring purposes.

The mice were divided into the following 5 test groups, with 6 mice per group.

Group 1: Intraperitoneal (IP) injection of suramin, 20 mg/kg, administered weekly to animals beginning at 9 weeks of age and continuing for four weeks (i.e. given at Age Weeks 9 , 10 , 11 and 12). The suramin was formulated in Normal saline solution.

Group 2 : Intraperitoneal (IP) injection of saline, 5 mL/g, administered weekly to animals beginning at 9 weeks of age and continuing for four weeks (i.e. given at Age Weeks 9 , 10 , 11 and 12). This was a control group.

Group 3 : Intranasal (IN) administration of a formulation, described below, of suramin, at a concentration of 100 mg/mL x 6 mL per spray, administered as one spray per nostril, one time per day, (interval of each application is around 2 minutes to ensure absorption) for 28 days (total of 56 sprays over 28 day period) beginning at 9 weeks of age (i.e. given daily during Age Weeks 9 , 10 , 11 and 12).

Group 4 : Intranasal (IN) administration of a formulation, described below, of suramin, at a concentration of 100 mg/mL x 6 mL per spray, administered as one spray per nostril, one time every other day, for 28 days (total of 28 sprays over 28 day period) beginning at 9 weeks of age (i.e. given once every other day during Age Weeks 9 , 10, 11 and 12).

Group 5 : Intranasal (IN) administration of a formulation, described below, of suramin, at a concentration of 100 mg/mL x 6 ml_ per spray, administered as one spray per nostril, one time every week, for 4 weeks (28 days) (total of 8 sprays over 28 day period) beginning at 9 weeks of age (i.e. given once weekly during Age Weeks 9 , 10 , 11 and 12).

 

This question was posed to me:-

A nasal spray in a human is about 0.1 ml, how do you give a tiny mouse 6 ml per nostril?  Even 0.6 ml looks implausible.

 

Conclusion

Will Suramin pass a phase 3 trial?  I think if it is trialed on a random group of 400 young people with moderate or severe autism, it will very likely fail.

Professor Naviaux believes Suramin may be a unifying therapy, one that works in all autism.  The results from the PaxMedica study do not support this.

PaxMedica has the data showing the individual results.  Are there super-responders? Are there non-responders? Does Suramin perhaps make some people's autism worse?  All we can see is the average response, which is marginally better than the placebo; not what we expected after seeing the initial study.

Expecting Suramin to work well for everyone is raising the bar too high.  Try and identify markers for the responders and super-responders and then limit the phase 3 trial to these people.

Is intranasal delivery of Suramin going to achieve a therapeutic level inside the human brain?  Hopefully yes, but it may not work.

Is long term use of Suramin going to be safe? Will it require ever-increasing doses? Nobody knows, and note that safety was the original concern when Suramin’s use was proposed by Naviaux.

Intranasal administration has the best chance of being totally safe.  Spend a little extra money on the clever dispenser covered in this old post, that keeps 100% of the drug in the right place.

 

https://epiphanyasd.blogspot.com/2015/09/opn-300-oxytocin-and-autism.html

 

Maybe get someone other than a lawyer, to proof read your patent.

 




 

Friday 8 October 2021

Alpha-lactalbumin Whey Protein – Treating Neurological Dysfunction, including Epilepsy and Autism, via the Gut (Eubiosis)

 


Moo! α-Lactalbumin is a whey protein constituting 22% of the proteins in human milk and 3.5% of those in cow milk.

 

Most parents love the idea of treating their child with autism or epilepsy with diet.

Diet is so popular because you do not need a doctor - no drugs, no prescriptions, just healthy food.

This blog is about the science, which often takes us to drugs that need a prescription, but when talking about using the gut to fine-tune how the brain works, much can be achieved with nutraceuticals.

We previously saw how the ketogenic diet, which has been reducing epilepsy for one hundred years, actually works by modifying which bacteria grow in the gut.  The super high fat diet encourages specific bacteria to flourish and it is these bacteria which indirectly cause the cessation in seizures. You can replicate the effect with probiotic bacteria, without needing the highly restrictive diet at all.

Today I will introduce Alpha-lactalbumin, which is a commercially available whey protein found in mother’s milk and to a lesser extent in cow milk. 

Alpha-lactalbumin when combined with another regular in this blog, sodium butyrate, has been shown to improve autism, epilepsy and indeed depression.

The research also suggests that Alpha-lactalbumin may improve sleep and mood disorders.

  

Whey protein vs NAC

I recall reading about whey protein as an antioxidant back in 2013, when I was deciding what to try next after Bumetanide, as I developed by son's personalized polytherapy for autism. I did choose NAC, but I still recall the surprising option of whey protein.

Whey protein is popular among athletes and body builders.

Whey protein is a mixture of proteins isolated from whey, the liquid material created as a by-product of cheese production. The proteins consist of α-lactalbumin (ALAC)β-lactoglobulin, serum albumin and immunoglobulins.

 

Improved glutathione status in young adult patients with cystic fibrosis supplemented with whey protein

We sought to increase glutathione levels in stable patients with cystic fibrosis by supplementation with a whey-based protein.

 After supplementation, we observed a 46.6% increase from baseline (P<0.05) in the lymphocyte GSH levels in the supplemented group. No other changes were observed. 

Conclusion: The results show that dietary supplementation with a whey-based product can increase glutathione levels in cystic fibrosis. This nutritional approach may be useful in maintaining optimal levels of GSH and counteract the deleterious effects of oxidative stress 

 

The Antioxidant Effects of Whey Protein Peptide on Learning and Memory Improvement in Aging Mice Models

The results showed that WHP could significantly improve the accumulation of MDA and PC, increase the activities of SOD and GSH-Px, resist oxidative stress injury, and enhance the potential of endogenous antioxidant defense mechanisms. WHP can significantly improve the decline of aging-related spatial exploration, body movement, and spatial and non-spatial learning/memory ability. Its specific mechanism may be related to reducing the degeneration of hippocampal nerve cells, reducing the apoptosis of nerve cells, improving the activity of AChE, reducing the expression of inflammatory factors (TNF-α and IL-1β) in brain tissue, reducing oxidative stress injury, and improving the expression of p-CaMK and BDNF synaptic plasticity protein.

These results indicate that WHP can improve aging-related oxidative stress, as well as learning and memory impairment.

 

 

 α-lactalbumin (ALAC)

Today we are really focused on one specific whey protein, α-lactalbumin (ALAC), which is actually sold commercially as a nutraceutical.

 


https://www.arlafoodsingredients.com/health-foods/our-ingredients/alpha-lactalbumin/?downloadUrl=%252F4908eb%252Fglobalassets%252Frestricted%252F2017%252F_ho_alpha20_wellbeing_0317_v2.pdf

 

 

Applications for α-lactalbumin in human nutrition

α-Lactalbumin is a whey protein that constitutes approximately 22% of the proteins in human milk and approximately 3.5% of those in bovine milk. Within the mammary gland, α-lactalbumin plays a central role in milk production as part of the lactose synthase complex required for lactose formation, which drives milk volume. It is an important source of bioactive peptides and essential amino acids, including tryptophan, lysine, branched-chain amino acids, and sulfur-containing amino acids, all of which are crucial for infant nutrition. α-Lactalbumin contributes to infant development, and the commercial availability of α-lactalbumin allows infant formulas to be reformulated to have a reduced protein content. Likewise, because of its physical characteristics, which include water solubility and heat stability, α-lactalbumin has the potential to be added to food products as a supplemental protein. It also has potential as a nutritional supplement to support neurological function and sleep in adults, owing to its unique tryptophan content. Other components of α-lactalbumin that may have usefulness in nutritional supplements include the branched-chain amino acid leucine, which promotes protein accretion in skeletal muscle, and bioactive peptides, which possess prebiotic and antibacterial properties. This review describes the characteristics of α-lactalbumin and examines the potential applications of α-lactalbumin for human health.

 

α-Lactalbumin constitutes approximately 22% of total protein and approximately 36% of the whey proteins in human milk and approximately 3.5% of total protein and approximately 17% of whey proteins in bovine milk (Figure 1)1,2. It has an amino acid composition that is high in essential amino acids and comparatively rich in tryptophan, lysine, cysteine, and the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine.3 (Table 1)4. Because of its unique amino acid profile, α-lactalbumin has potential for multiple uses: (1) as a component of infant formulas, to make them more similar to breast milk; (2) as a supplement to promote gastrointestinal health or modulate neurological function, including sleep and depression; and (3) as a therapeutic agent with applications in conditions or diseases such as sarcopenia, mood disorders, seizures, and cancer. 

 

Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy

We studied the effects of intestinal inflammation on pentylenetetrazole (PTZ)-induced seizures in mice and the effects thereon of some antiepileptic and anti-inflammatory treatments to establish if a link may exist. The agents tested were: alpha-lactoalbumin (ALAC), a whey protein rich in tryptophan, effective in some animal models of epilepsy and on colon/intestine inflammation, valproic acid (VPA), an effective antiepileptic drug in this seizure model, mesalazine (MSZ) an effective aminosalicylate anti-inflammatory treatment against ulcerative colitis and sodium butyrate (NaB), a short chain fatty acid (SCFA) normally produced in the intestine by gut microbiota, important in maintaining gut health and reducing gut inflammation and oxidative stress. Intestinal inflammation was induced by dextran sulfate sodium (DSS) administration for 6 days. Drug treatment was started on day 3 and lasted 11 days, when seizure susceptibility to PTZ was measured along with intestinal inflammatory markers (i.e. NF-κB, Iκ-Bα, COX-2, iNOS), histological damage, disease activity index (DAI) and SCFA concentration in stools. DSS-induced colitis increased seizure susceptibility and while all treatments were able to reduce intestinal inflammation, only ALAC and NaB exhibited significant antiepileptic properties in mice with induced colitis, while they were ineffective as antiepileptics at the same doses in control mice without colitis. Interestingly, in DSS-treated mice, VPA lost part of its antiepileptic efficacy in comparison to preventing seizures in non-DSS-treated mice while MSZ remained ineffective in both groups. Our study demonstrates that reducing intestinal inflammation through ALAC or NaB administration has specific anticonvulsant effects in PTZ-treated mice. Furthermore, it appears that intestinal inflammation may reduce the antiepileptic effects of VPA, although we confirm that it decreases seizure threshold in this group. Therefore, we suggest that intestinal inflammation may represent a valid antiepileptic target which should also be considered as a participating factor to seizure incidence in susceptible patients and also could be relevant in reducing standard antiepileptic drug efficacy.

  

Increased efficacy of combining prebiotic and postbiotic in mouse models relevant to autism and depression

Highlights 

·        Prebiotic/postbiotic combination is a suitable approach in manipulating the Microbiota Gut Brain Axis. 

·        Prebiotic/postbiotic combination is more effective than single drug administration. 

·        α-lactalbumin/sodium butyrate combination improves animal behaviour in autistic (BTBR) mice. 

·        α-lactalbumin/sodium butyrate combination improves animal behaviour in the depression chronic unexpected mild stress model.

   

Conclusion

It is not by chance that mother’s milk has evolved to be rich in Alpha-lactalbumin (ALAC).

ALAC has wide-ranging health benefits. People with gut dysbiosis would seem likely to benefit from it, particularly if they have co-occurring neurological symptoms (epilepsy, ASD, depression) that are made worse by GI inflammation.

NaB (Sodium Benzoate) has some overlapping benefits with ALAC and the research shows that the combined effect is better than either alone,

The increase in production of glutathione (GSH), the body’s main antioxidant is clearly a benefit of whey protein in general and we assume its effect extends to ALAC.

NaB seems to have an effect that can be very dose dependent.  Too little has no benefit and, at least in some people, too much and you lose the benefit.

NaB is producing butyric acid and depending on your fiber intake and gut bacteria you are already producing your own butyric acid.  As a result, it makes sense that the effective dose of NaB will vary from person to person.

This continues the earlier subject of eubiosis vs dysbiosis.  The graphic below looks nice, but really is an oversimplification.  You can modify the microbiome to produce a specifically targeted change in the brain, which has nothing to do with allergic diseases.  All  very clever and a little hard to believe at first.

 

 


Source : The Role of Prebiotics and Probiotics in Prevention of Allergic Diseases in Infants


I think ALAC is an interesting choice for autism and hopefully one day there will be a clinical trial.  In that trial do not exclude those with epilepsy, but collect data of the impact of ALAC on the frequency/intensity of seizures.