UA-45667900-1
Showing posts with label Autism. Show all posts
Showing posts with label Autism. Show all posts

Thursday 5 September 2019

Cannabis Use and Potential Epigenetic Damage to Autism Genes


Today we consider another risk factor that may be contributing to the increase in prevalence of autism and it is about the father, for a change.  In the public's perception cannabis is a safe alternative way to treat all kinds of medical problems, many experts do not agree.




Fathers who use marijuana may be using it for two, suggests a study from Duke Medical Center. Although the study is small, encompassing just 24 men and 15 rats, it highlights a potential transgenerational effect of marijuana exposure—the passing on of sperm in which an autism-associated gene, DLGAP2, has accumulated extra epigenetic marks.
The Duke scientists, led by Susan Murphy, PhD, associate professor of obstetrics and gynecology, identified significant hypomethylation at DLGAP2 in the sperm of men who used marijuana compared to controls. A similar observation was made in the sperm of rats exposed to tetrahydrocannabinol (THC) compared to controls. This hypomethylated state was also detected in the forebrain region of rats born to fathers exposed to THC.
Murphy and colleagues said their findings do not establish a definitive link between cannabis use and autism, but the possible connection warrants further, urgent study, given efforts throughout the country to legalize marijuana for recreational and/or medicinal uses.
This study is the first to demonstrate an association between a man’s cannabis use and changes of a gene in sperm that has been implicated in autism,” she emphasized. “Given marijuana’s increasing prevalence of use in the United States and the increasing numbers of states that have legalized its use, we need more studies to understand how this drug is affecting not only those who smoke it, but their unborn children.
“There’s a perception that marijuana is benign. More studies are needed to determine whether that is true.”
The original paper:-

Parental cannabis use has been associated with adverse neurodevelopmental outcomes in offspring, but how such phenotypes are transmitted is largely unknown. Using reduced representation bisulphite sequencing (RRBS), we recently demonstrated that cannabis use is associated with widespread DNA methylation changes in human and rat sperm. Discs-Large Associated Protein 2 (DLGAP2), involved in synapse organization, neuronal signaling, and strongly implicated in autism, exhibited significant hypomethylation (p < 0.05) at 17 CpG sites in human sperm. We successfully validated the differential methylation present in DLGAP2 for nine CpG sites located in intron seven (p < 0.05) using quantitative bisulphite pyrosequencing. Intron 7 DNA methylation and DLGAP2 expression in human conceptal brain tissue were inversely correlated (p < 0.01). Adult male rats exposed to delta-9-tetrahydrocannabinol (THC) showed differential DNA methylation at Dlgap2 in sperm (p < 0.03), as did the nucleus accumbens of rats whose fathers were exposed to THC prior to conception (p < 0.05). Altogether, these results warrant further investigation into the effects of preconception cannabis use in males and the potential effects on subsequent generations.


Conclusion

I do not think anyone should be surprised that the THC in cannabis may leave an epigenetic tag on the DNA of the user and that it is passed down to following generations. We saw a long time ago that the same applies to people who smoke. It is just a question of which genes are most affected.  In the case of smoking it affected how your body deals with oxidative stress and this blocked how drugs for severe asthma (COPD) should work, so making COPD a very big problem for ex-smokers. Stopping smoking does not make the problem go away.

Any kind of prolonged chemical exposure may be a problem, the lead that was used in gasoline/petrol, current use of potent pesticides etc.  The same applies to electrical/magnetic exposure. Best not to live very close to high voltage power lines, or have a mobile phone mast on top of your building.

The concern is that these epigenetic markers are heritable and so accumulate over the generations, a kind of epigenetic pollution.

If great great grandpa worked down a coal mine or in a chemical factory, it may be recorded in your DNA.





Friday 30 August 2019

Cesarian Delivery and Autism – another inconvenient truth?


Brasil is the C-section capital of the world, with rates in the public sector of 35–45%, and 80–90% in the private sector.

A recent study from the Karolinska Institute in Sweden, analysing 61 previous studies, has again shown a connection between birth by Cesarian Section and an increased risk of autism or indeed ADHD. 

C-sections account for just 16% of births in Sweden, but 32% in North America.

This of course prompted a reaction to reassure future mothers that they have nothing to fear, from experts in obstetrics who of course know nothing about the etiology of autism.  Mothers should be reassured, but trashing the study helps nobody.  Instead of a 1% risk of non-trivial autism, it rises to 1.3%. You still have more than a 98% chance of having a neurotypical child, all other factors being equal.  Without a medically necessary C-section, death is a real possibility.

It was a couple of years ago that the Karolinska Institute highlighted the fact that those with severe autism currently have a life expectancy of under 40 years.  Another inconvenient truth.


Association of Cesarean Delivery With Risk of Neurodevelopmental and Psychiatric Disorders in the Offspring 

Question  Is birth by cesarean delivery associated with an increased risk of neurodevelopmental and psychiatric disorders in the offspring compared with birth by vaginal delivery?
Findings  In this systematic review and meta-analysis of 61 studies comprising more than 20 million deliveries, birth by cesarean delivery was significantly associated with autism spectrum disorder and attention-deficit/hyperactivity disorder.
Meaning  The findings suggest that understanding the potential mechanisms behind these associations is important, especially given the increase in cesarean delivery rates for nonmedical reasons.
Abstract
Importance  Birth by cesarean delivery is increasing globally, particularly cesarean deliveries without medical indication. Children born via cesarean delivery may have an increased risk of negative health outcomes, but the evidence for psychiatric disorders is incomplete. 
Conclusions and Relevance  The findings suggest that cesarean delivery births are associated with an increased risk of autism spectrum disorder and attention-deficit/hyperactivity disorder, irrespective of cesarean delivery modality, compared with vaginal delivery. Future studies on the mechanisms behind these associations appear to be warranted. 
Very many things are known to slightly increase the odds of a person having autism and the more risk factors you have the more severely autistic you may be.  This ranges from maternal stress (anything from experiencing a hurricane, work stress, life trauma) to maternal/paternal age, obesity, gestational diabetes, alcohol/drug abuse, illness during pregnancy etc. This combines with whatever is in the parents’ DNA and random mutations that are bound to occur.    

A more rational reaction might be to investigate further why there might be a link and how you could counter any risk to children born by cesarian section.  You only have to read the existing research, or this blog.

There are 2 very good reasons why there should be a link between autism and C section, both have been covered in this blog.

1.     The microbiome comes from the mother. Science is only recently starting to understand the role of bacteria in health, but we know that it plays a key role in conditioning/calibrating the immune system of babies.  Once the immune system has been calibrated it is set for life.  Early exposure to bacteria is necessary and humans evolved to expect it.  If your immune system is over/under sensitive there will be consequences. Birth via C-section avoids exposure to bacteria in the birth canal, unless the newly arrived baby is “seeded” with bacteria from the mother. Mother’s milk is another key source of transferring the mother’s microbiome to the baby. 

2.     We saw that the birthing hormone Oxytocin plays a key role in triggering the “GABA switch” in new-borns. This is the process which transforms immature neurons with high chloride to mature neurons with low chloride shortly after birth.  During natural birth there is a surge in the hormone Oxytocin that is transferred to the baby, this causes the chloride transporter KCC2 to be further expressed and the “opposing” transporter NKCC1 to fade away.  In many people with severe autism their neurons remain in the immature state their entire life.  Just as you can replace the bacteria transfer lost in birth via C-section, there would be absolutely no reason why you could not replicate the surge in Oxytocin to "flip the GABA switch".

The recent study showed that elective C-sections (where the baby is in perfect health and not distressed) are associated with the elevated risk of both Autism and ASD.

Regular readers of this blog would probably be surprised if C-section did not increase autism prevalence.

The important thing is to acknowledge this likely connection and mitigate it, rather than try and fault the numerous studies that have shown the same effect.

The same of course applies to reducing the very small risk from vaccines, rather than construct new studies in a contrived way to show there is zero risk.   If you can safely and cheaply reduce the risk of a negative reaction to vaccines, why wouldn’t you?  Just follow Johns Hopkins example and give Ibuprofen or Montelukast (Singular) for a few days before and after and remember to never give Paracetamol/Acetaminophen (Tylenol) in response to fever after a vaccine. Paracetamol/ Acetaminophen reduces the body’s key antioxidant GSH just when the baby/child may need its neuroprotection most.

Some conditions are associated with preterm births, a good example is Cerebral Palsy (CP), which is twice as common in babies born very early. CP is rarely genetic and is usually considered to be caused by a complication during pregnancy, birth or shortly thereafter. I think you would find a correlation between C-sections and CP, but in this case I doubt you would find it in elective C-sections.   In other words C-sections do not “cause” CP, but they may be associated with it. The ID/MR often found in CP might be elevated by C-section and, if so, would be treatable.


Conclusion

In order to halt the rise in incidence of the disabling kinds of autism there should be steps taken to reduce some of the very many factors that are driving the increase, albeit each one sometimes by a tiny amount.

This would be a good application of all those thousands of autism research papers, many of which have shown what factors contribute to increased risk, that now sit gathering dust.

We are not at the stage of wide scale gene editing, but many simple steps can be taken today to improve future health.  This does not mean do not vaccinate, or avoid medically necessary C-sections; vaccinations and C-sections have saved millions of lives. But, why would you not want to take a good thing and make it even better?  That is what we humans tend to be good at, like the Swedes and their Volvos.

Perhaps take your C-section with a generous smear of Mum's bacteria and a shot of synthetic oxytocin?  

There will be more on Cerebral Palsy in a later post on D-NAC (Dendrimer N-Acetyl Cysteine). 

                                                               



Thursday 15 August 2019

Wandering, Water, Sense of Danger and Accidents


We were recently at the seaside in Greece, where Monty was enjoying swimming in the sea. He is now a very competent swimmer and behaves in the water just like any other confident swimmer. Together with Mum he actually rescued a Russian swimmer in distress.  Monty does not get crazy ideas to swim to islands in the distance, or anything like that. Not so far, at least. 

Water is behind a shocking number of wanderings and deaths.

In the North American media, you can see that on a very regular basis children with autism and/or ID/MR (Intellectual Disability/Mental Retardation) wander off and get lost. Very often they are found in or beside water.

In Europe you hear much less frequently about children wandering. A high-profile case recently was an Irish teenage girl with MR/ID who disappeared while on holiday at a tiny jungle resort in Malaysia.  She left behind an open ground floor window and was found 10 days later beside a stream in a ravine a mile away. 

She had holoprosencephaly, which is an umbrella term for conditions relating to when the forebrain of the embryo fails to develop into two separate hemispheres, it includes Agenesis of the Corpus Callosum (ACC) when the part of the brain that is supposed to connect the two hemispheres fails to develop. Partial ACC and the exact opposite are features appearing in some severe autism.

People with MR/ID have no sense of danger and are usually enchanted by water. Wandering is far more likely than abduction.

Another case recently was an American teenager on a cruise arranged by his residential care home, it appears that he jumped over the deck railing at night to go for a swim in the ocean.

Even a bath tub can be dangerous, a young man with autism and epilepsy was left unattended in a bath at a UK care facility. He had a seizure and drowned.

I do think much more could be done to prevent wandering and water-related accidents. Firstly, people (parents) should be made more aware of who is at risk; anyone with a low IQ and unable to travel independently is at risk.

People with ID/MR often live in a world of cartoons, where all kinds of crazy things are possible, like jumping off a cruise ship and nobody ever gets hurt.  Going to a jungle retreat, like you are living in the Jungle Book cartoon, why wouldn’t you sneak downstairs in the night and enter your private jungle world?

Just because you have never been able to wander before does not mean you never will. 

The shortened life expectancy of people with severe autism is in large part down to preventable accidents, seizures and poor basic healthcare.

I do think that treating MR/ID would be much more socially acceptable than treating autism. Understanding the danger of crossing a road, or falling into a lake is more important than being able to tie your shoe laces.  If you can improve cognition with a pill, who could possibly object to that? 

It is no surprise that we have www.Treatable-ID.org but no www.Treatable-ASD.org 

In reality you will struggle to have treating ID taken seriously, although for many people it is possible.




Tuesday 30 July 2019

Ginseng Compound K Esters for some Epilepsy, Autism and Cancers?

Many natural products like Ginseng and Curcumin do have long known medicinal properties but suffer from extremely low bioavailability, which limits their benefit.
Ginsenosides are compounds found in the Ginseng plant. They are metabolized by the gut flora into active compounds that include Compound K.  Compound K has been shown to have a variety of pharmacological actions such as anti-inflammatory, anti-oxidant, anti-cancer and vasorelaxation.  It also has interesting effects that relate to autism and other neurological disorders.

Compound K (CK) has extremely low bioavailability (circa 5%) which limits it potential therapeutic benefit. There are expensive versions of ginseng that aim to maximize Compound K (CK) production in the gut, but they do nothing to improve how much gets from the gut into the bloodstream.

It is possible to modify Compound K by making an ester. This ester has been shown to be highly bioavailable and that means the theoretic benefits, shown in test tubes, might actually be genuinely achieved in humans.

Two types of ester have been studied, the butyl and octyl ester resulting in so-called CK-B and CK-O.






There currently is a $400 million business selling ginseng worldwide, the research and production is mainly coming from Korea and China.  There probably should be pharmaceutical production of CK-B and/or CK-O, but I would not hold your breath.

CK-O was recently proposed as a treatment for some cancers, so perhaps someone will commercialize it.

Interestingly, the standard form CK has been proposed to treat colon cancer, which does make sense since CK is produced in the gut making colon cancer a good choice. You would think that CK-O would work better.


Bcl-2 / Bax

The gene/protein Bcl-2 is relevant to both cancer and autism and has been covered previously in this blog.

A total of 25 genes make up the Bcl-2 family of proteins. Bcl-2 itself is anti-apoptotic while family member Bax is pro-apoptotic.

Apoptosis is programmed cell death.  The Bax/Bcl-2 ratio determines the apoptotic potential of a cell. Increasing the Bax/Bcl-2 ratio can be highly desirable if you have cancer, since what you want is cell death.

Bcl-2 is dysregulated in autism. Studies have shown that the expression of Bcl-2 is significantly decreased in the brain of autistic subjects. This means a reduction in a protein that blocks apoptotic cell death, i.e. this favours growth and too much growth is a bad thing.


The big head type of autism (macrocephaly) is associated with hyperactive pro-growth signalling pathways, so reduced expression of Bcl-2 is not a surprise.


CK-O for some cancer

The Compound K ester CK-O  exerts strong anti-tumour activity by suppression of anti-apoptotic protein Bcl-2 and increase of pro-apoptotic protein Bax. It increases the Bax/Bcl-2 ratio.


CK-O from some epilepsy and some autism?

There are many types of epilepsy and hundreds of types of autism.
One commonly shared feature is the imbalance between the GABA-mediated inhibition and the glutamate-mediated excitation.

CK-O looks likes it might help both conditions.

·        CK is shown to reduce the expression of NMDA receptors and to attenuate the function of the NMDA receptors in the brain.

·        GABAB receptor activation via CK can regulate KCC2 at the cell surface in a manner that reduces intracellular chloride and hence the reversal potential for GABAA receptors

·        The expression of KCC2 protein was elevated by the treatment of CK while the expression of NKCC1 protein was reversely down-regulated.

·        CK enhances the expression of GABAA receptor subunit α1 in the brain and exhibits a tendency to decrease the expression of NMDAR1 protein in the hippocampus.

                                    
Ginseng for Autism?

There is some weak evidence that Ginseng may help in some autism.

I think what is really happening is that the effect is weak rather than the evidence is weak.  Ginseng may have a weak positive effect in some autism; weak because the amount of Compound K absorbed is trivial.

If Ginseng helps, CK-O could be substantially more effective.

Ginseng,as a GABAb Antagonist, as an "Add-on Therapy" for some Autism? Also Homotaurine and Acamprosate



We demonstrate that GABABR activation can regulate KCC2 at the cell surface in a manner that alters intracellular chloride and the reversal potential for the GABAAR

In the trial below the dose appears very low at 250mg. In the more encouraging study in ADHD the dose was 1000mg twice a day.


Autism is a pervasive developmental disorder, with impairments in reciprocal social interaction and verbal and nonverbal communication. There is often the need of psychopharmacological intervention in addition to psychobehavioral therapies, but benefits are limited by adverse side effects. For that reason, Panax ginseng, which is comparable with Piracetam, a substance effective in the treatment of autism, was investigated for possible improvement of autistic symptoms. There was some improvement, which suggests some benefits of Panax ginseng, at least as an add-on therapy.

I would not expect a dramatic effect from any commercial Ginseng product, but CK-O really could have an effect.




Although there are many research reports regarding the bioactive function of ginsenosides and ginseng, studies on the neuroprotective eect and eects on the cognitive function of compound K are limited. It is generally agreed that compound K is more bioavailable than the parent ginsenosides, including Rb1, Rb2, and Rc, and is the major contributing factor to the health benefits of ginseng. However, as most studies were conducted using disease-associated models, such as Alzheimer’s disease and ischemic stroke, the results cannot be directly translated to the healthy normal population. Furthermore, it is not clear whether compound K can cross the blood–brain barrier and exert any action on cognitive function in humans, even though the compound was reported to facilitate GABA release in the hippocampus and exhibit a protective effect against scopolamine-induced hippocampal damage in a mouse model. The possible mechanisms of action of compound K in neuroprotection and cognitive improvement include attenuation of ROS levels in neural cells through induction of antioxidant enzymes, regulation of NO, GABA, and serotonin receptors, Ca 2+ channel modulation, regulation of the MAPK pathway, and inhibition of inflammation.
Although ginseng and ginsenosides were shown to have neuroprotective and cognitive enhancing eects, further research is required to establish whether compound K is the major component of ginseng responsible for cognitive improvement in humans.

The imbalance between the GABA-mediated inhibition and the glutamate-mediated excitation is the primary pathological mechanism of epilepsy. GABAergic and glutamatergic neurotransmission have become the most important targets for controlling epilepsy. Ginsenoside compound K (GCK) is a main metabolic production of the ginsenoside Rb1, Rb2, and Rc in the intestinal microbiota. Previous studies show that GCK promoted the release of GABA from the hippocampal neurons and enhanced the activity of GABAA receptors. GCK is shown to reduce the expression of NMDAR and to attenuate the function of the NMDA receptors in the brain. The anti-seizure effects of GCK have not been reported so far. Therefore, this study aimed to investigate the effects of GCK on epilepsy and its potential mechanism. The rat model of seizure or status epilepticus (SE) was established with either Pentylenetetrazole or Lithium chloride-pilocarpine. The Racine’s scale was used to evaluate seizure activity. The levels of the amino acid neurotransmitters were detected in the pilocarpine-induced epileptic rats. The expression levels of GABAARα1, NMDAR1, KCC2, and NKCC1 protein in the hippocampus were determined via western blot or immunohistochemistry after SE. We found that GCK had deceased seizure intensity and prolonged the latency of seizures. GCK increased the contents of GABA, while the contents of glutamate remained unchanged. GCK enhanced the expression of GABAARα1 in the brain and exhibited a tendency to decrease the expression of NMDAR1 protein in the hippocampus. The expression of KCC2 protein was elevated by the treatment of GCK after SE, while the expression of NKCC1 protein was reversely down-regulated. These findings suggested that GCK exerted anti-epileptic effects by promoting the hippocampal GABA release and enhancing the GABAAR-mediated inhibitory synaptic transmission.


Absorption mechanismof ginsenoside compound K and its butyl and octyl ester prodrugs in Caco-2cells.

 

Ginsenoside compound K (CK) is a bioactive compound with poor oral bioavailability due to its high polarity, while its novel ester prodrugs, the butyl and octyl ester (CK-B and CK-O), are more lipophilic than the original drug and have an excellent bioavailability. The aim of this study was to examine the transport mechanisms of CK, CK-B, and CK-O using human Caco-2 cells. Results showed that CK had a low permeability coefficient (8.65 × 10(-7) cm/s) for apical-to-basolated (AP-BL) transport at 10-50 μM, while the transport rate for AP to BL flux of CK-B (2.97 × 10(-6) cm/s) and CK-O (2.84 × 10(-6) cm/s) was significantly greater than that of CK. Furthermore, the major transport mechanism of CK was found as passive transcellular diffusion with active efflux mediated by P-glycoprotein (P-gp). In addition, it was found that CK-B and CK-O were not the substrate of efflux transporter since the selective inhibitors (verapamil and MK-571) of efflux transporter had little effects on the transport of CK-B and CK-O in the Caco-2 cells. These results suggest that improving the lipophilicity of CK by acylation can significantly improve the transport across Caco-2 cells.

Panax ginseng C.A. Meyer, the active components of which are mainly ginsenosides, is frequently utilized as a herbal drug in traditional oriental medicine. These ginsenosides, which belong to the class of triterpene saponins, have been reported to possess various biological and pharmacological activities such as antiaging, antiinflammation and antioxidation in central nerve system, cardiovascular system and immune system. Previous studies have shown that the pharmacological actions of ginsenosides contributed to their metabolites through biotransformation by human intestinal bacteria. Compound K (CK; Figure 1) is one of the main pharmacologically active metabolites of protopanaxadiol ginsenosides (e.g., Rb1, Rb2 and Rc) and it was reported that, it was accumulated in the liver after absorption from the GI tract to the blood, and some CK was transformed into fatty acid esters which may be the active components of ginsenosides in the body. Many studies revealed that most of the ginsenosides are poorly absorbed along the human intestinal tract due to a high polarity. Odani et al. have reported that the amount of ginsenoside Rg1 absorbed via oral administration was within the range of 1.9−20.0% of the dosage in animal models. Other ginsenosides such as Rb1 and Rb2 were also slowly absorbed through digestive tract, and the oral bioavailabilities in rats were relatively low. The biological activities of drugs depend not only on their chemical structures, but also on their degree of lipophilic and membrane permeation, which could enhance their transport across the cell membrane or influence their interaction with proteins and enzymes. Recently, considerable attention has been paid to the development of ester prodrugs, which is a widely used approach to improving overall lipophicity, membrane permehave been reported to enhance its lipophilicity, bioavailability and in vivo activity. However, to date, limited information is available concerning the mechanisms of oral absorption for CK and production of ester prodrugs to enhance the oral absorption of ginsenoside CK. To increase the oral absorption of CK, esterification provides a route to obtain more lipophilic derivatives. In addition, it has been reported that acylation of cholestane glycoside increased the antitumor potency. Several acylated triterpenoid saponins isolated from the roots of Solidago virgaurea subsp. virgaurea in a low concentration also activated the metabolism of endothelial cells, which enhanced the permeability of the blood vessel walls for better adsorption of the saponins into tissues. We thus speculated that the novel ester prodrugs of CK, butyl and octyl esters (CK-B and CK-O; Figure 1), which are more lipophilic than parent compound, may have an excellent oral bioavailability. The objective of this study was to determine the transepithelial transport and absorption mechanisms of CK and its ester derivatives in the Caco-2 system. Caco-2 cell monolayers have been generally accepted as an in vitro model for prediction of drug absorption across human intestine and for mechanistic studies of intestinal drug transport since these cells show morphological and functional similarities to human small intestinal epithelial cells. In this study, both ester derivatives were utilized for transepithelial transport and absorption assays in Caco-2 monolayers compared with CK to investigate whether esterification could enhance the membrane permeability of high hydrophilic compound, thus improving the intestinal absorption of drug.
Our results are consistent with the previous reports which showed that CK had a low oral bioavailability (approximately 5%) in rats. However, as shown in our results, the low oral bioavailability of CK can be improved by esterification of CK into CK-B and CK-O.


Octyl ester ofginsenoside compound K as novel anti‐hepatoma compound: Synthesis and evaluation on murine H22 cells in vitro and in vivo


Ginsenoside compound K (M1) is the active form of major ginsenosides deglycosylated by intestinal bacteria after oral administration. However, M1 was reported to selectively accumulate in liver and transform to fatty acid esters. Ester of M1 was not excreted by bile as M1 was, which means it was accumulated in the liver longer than M1. This study reported a synthetic method of M1‐O, a mono‐octyl ester of M1, and evaluated the anticancer property against murine H22 cell both in vitro and in vivo. As a result, both M1 and M1‐O showed a dose‐dependent manner in cytotoxicity assay in vitro. At lower dose of 12.5 μm, M1‐O showed moderate detoxification. Instead, M1‐O exhibited significantly higher inhibition in H22‐bearing mice than M1. M1‐O induced murine H22 tumor cellular apoptosis in caspase‐dependent pathway given that pan‐caspase inhibitor, Z‐VAD‐FMK, could reverse the cytotoxicity induced by M1‐O. Additionally, pro‐ and anti‐apoptosis proteins, Bcl‐2 and Bax, altered and consequently induced increased expression of cleaved caspase‐3. Interestingly, cyclophosphamide regimen significantly induced atrophy of spleen and thymus, main immune organs, while M1‐O treatment greatly alleviated this atrophy. Collectively, we propose M1‐O as a candidate for live cancer treatment.

M1-O exerted strong anti-tumor activity by suppression of anti-apoptotic protein Bcl-2 and increase of pro-apoptotic protein Bax

Note: M1-O is the same think as CK-O


Ginsenosides are isolated from the Panax quinquefolius. This is a natural product triterpene saponins and steroid glycosides. Ginsenosides are the members of a dammarane family, which consists of a 4-ring and steroid-like structure. All ginsenosides have two or three hydroxyl groups in the carbon 3 and 20. Ginsenosides are converted into active metabolites like 20(S)- protopanaxadiol Rb1-Rb3, Rc, Rd, Rg3, Rh2, Rs1 (2) with help of human gut bacteria -glycosidase Eubacterium sp. A-44. Ginsenosides produced a variety of pharmacological activities such as anti-inflammatory, anti-oxidant, anti-cancer and vasorelaxation.                                                                                                                                                                       
                      

Emerging signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases

  

Conclusion

The ginseng compound K ester CK-O is likely to be a potent drug in humans with a range of effects, some of which do relate to autism and epilepsy.

Very often people with epilepsy are excluded from autism clinical trials.  Here is one drug where you might want to start with that very group.

CK-O will have multiple effects, meaning it is not selective, so while it may have some very good effects, there may be some negative ones.

You might think the CK-O molecule would be a good basis on which to build a modern patentable drug; a K-O (knock-out) for someone.

Natural substances with health benefits like phytoestrogens (soy etc), curcumin/turmeric, ginseng and even bee propolis either need to be eaten in large quantities or the active substance identified and synthesized. The people with neurofibromatosis (NF-1, NF-2) consuming large amounts of expensive New Zealand propolis as a PAK1 inhibitor might as well save money and buy the active ingredient itself another ester, this time caffeic acid phenethyl ester, and gives the bees a rest.






Thursday 18 July 2019

Azosemide in Autism – ça marche aussi / it works too

Rathaus/City Hall in Hanover, Germany      
Attribution: Thomas Wolf, www.foto-tw.de

The short version of this post is that the old German diuretic Azosemide delivers the same autism benefit as the popular diuretic Bumetanide, but it has a different profile of diuresis.  Azosemide may indeed be more potent at blocking NKCC1 in the brain, but this needs to be investigated/confirmed.  For some people Azosemide will be a better choice than Bumetanide.

The bulk of today’s post is really likely to be of interest only to bumetanide users and the French and German bumetanide researchers.

I did suggest recently when I published version 5 of Monty’s PolyPill, that it is getting close to the final version.  Some of the potential remaining elements have already been written about in this blog, but I have not finished evaluating them.  Azosemide falls into this category.

One theme within this blog has been to increase the “autism effect” of Bumetanide, which was the first pharmaceutical intervention going back to 2012.  I did look at modifying how the body excretes Bumetanide to increase its plasma concentration using an OAT3 inhibitor, but that is little different to just increasing the dose. There are other ways to lower chloride levels within neurons than blocking NKCC1, you can target the AE3 exchanger for example with another diuretic called Diamox, or you can just substitute bromide ions for chloride ions, using potassium bromide. Bromide is used to treat Dravet Syndrome and other hard to treat types of pediatric epilepsy.

Researchers in Germany have developed modified versions (prodrugs) of Bumetanide that better cross the blood brain barrier; one interesting example is called BUM5.  Prodrugs are out of favour because they are hard to control, meaning that they work differently in different people.

The researchers in Hanover, Germany also published data showing that an old German diuretic called Azosemide might be much more potent than bumetanide inside the brain.

This becomes even more interesting because, not-surprisingly, diuretics as drugs are produced based on their diuretic effect.  The diuresis comes from their effect on a transporter called NKCC2, but the autism effect comes from blocking the very similar transporter NKCC1 in the brain. Because Azosemide and indeed Furosemide are 40 times weaker than Bumetanide at blocking NKCC2, the pills are made as Bumetanide 1mg, but Furosemide 40mg. Azosemide is now only used in parts of Asia, where people tend to be smaller and so there are 30mg tablets (the equivalent of Bumetanide 2mg is Azosemide 60mg in smaller adults).

Then comes bio-availability, which is how much of the pill you swallow makes it into your bloodstream. Bumetanide is very well absorbed, but in the case of Azosemide it can be 20%. I was informed that you can increase this 20% by taking it with Ascorbic acid, otherwise known as vitamin C.  

In the test tube, Azosemide is 4 times more potent at blocking NKCC1 than bumetanide at the same dose.

In the test tube 60 mg of Azosemide should be very much more potent than 2mg of Bumetanide at blocking the NKCC1 transporter found in the brain.

But then we do have the blood brain barrier that seems to block 99% of bumetanide form getting through. Azosemide will also struggle to cross the blood brain barrier (BBB). The Germans think that Bumetanide is much more acidic than Azosemide and that suggests that Azosemide might be more able to cross the BBB; however the French disagree.

The conclusion of all that is to take Azosemide with orange juice.


French Researchers

You might think the French researchers at Neurochloré would have trialed Azosemide before spending millions of dollars/euros approving Bumetanide for autism.  Their patent covers all these drugs, but they would find monetizing their idea much easier with Azosemide. Bumetanide is a cheap generic drug widely available across the world. Azosemide is currently only available in some parts of Asia.

I did ask the researchers a while back if anyone had tried Azosemide for autism. The answer was no.

I think the main plan all along was to develop a more potent drug than bumetanide, without diuresis, that could be used in many neurological disorders that feature disturbed chloride levels.  The licensing of Bumetanide for autism is just an intermediate step.

There are many considerations in developing the new drug, not least what exactly is bumetanide’s mode of action. Is it the central effect of the tiny 1% that can cross the blood brain barrier? Or is it a peripheral effect?

While the German researchers think Azosemide can cross the blood brain barrier better than Bumetanide, the French do not think so.

The fact that Azosemide does have the same “autism effect” as bumetanide may help understand how it works and then this would help develop the new tailor-made drug. This is why they were interested by the news in today’s post.

I did suggest making an experiment of bumetanide and Azosemide in healthy adults to measure how much is present in spinal fluid, this is a proxy for how much is inside the brain.

In the meantime bumetanide-responders with autism have the choice of two drugs, with quite different patterns of diuresis. So for one person Bumetanide might be best, in another Azosemide and in some a combination of both drugs might be best.

Bumetanide is short-acting and causes diuresis in the first 30-90 minutes, in most people it is substantial diuresis while in some people it is minimal. Azosemide is a long-acting diuretic and the peak effect is 3 to 5 hours after taking the drug. It seems that in some people the diuretic effect is very mild and it is always delayed.
When I took Azosemide to check the effect, I did not notice any diuretic effect.  I would not have known it was a diuretic.

The higher the dose of Bumetanide/Azosemide the greater the autism benefit will be, depending on how elevated the initial chloride level was. The limiting factor is diuresis and at extreme levels ototoxicity. Very high doses of loop diuretics can damage your ears – ototoxicity.


In immature neurons you have almost exclusively NKCC1 (green above) whereas in adult neurons you have almost exclusively KCC2 (orange above), but you can be at any point in between. Also this point is not fixed in one person; external factors can shift it in either direction.

As a result the effective dose of Bumetanide/Azosemide will vary from person to person AND vary over time.

The severity of diuresis limits the dosage. This is why Azosemide clearly has a role to play at least for some people.

Here is the German paper that prompted the interest in Azosemide:-


Azosemide was the most potent NKCC1 inhibitor (IC50s 0.246 µM for hNKCC1A and 0.197 µM for NKCC1B), being about 4-times more potent than bumetanide. 

Azosemide was the most potent inhibitor of hNKCC1, inhibiting both splice variants with about the same efficacy. Azosemide lacks the carboxylic group of the 5-sulfamoylbenzoic acid derivatives (Fig. 1), demonstrating that this carboxylic group is not needed for potent inhibition of NKCC1. Clinically, Azosemide has about the same diuretic potency as furosemide, but both drugs are clearly less potent than bumetanide30, so the high potency of Azosemide to inhibit the hNKCC1 splice variants was unexpected. In contrast to the short-acting diuretic bumetanide, the long-acting Azosemide is not a carboxylic acid, so that its tissue distribution should not be restricted by a high ionization rate. However, it is highly bound to plasma proteins31, which might limit its penetration into the brain. Indeed, in a study in which the tissue distribution of Azosemide was determined 30 min following i.v. administration of 20 mg/kg in rats, brain levels were below detection limits (0.05 µg/g32).

In conclusion, the main findings of the present study on structure-activity analyses of 10 chemically diverse diuretics are that (1) none of the examined compounds were significantly more effective to inhibit NKCC1B than NKCC1A, and (2) Azosemide was more potent than any other diuretic, including bumetanide, to inhibit the two NKCC1 variants. The latter finding is particularly interesting because, in contrast to bumetanide, which is a relatively strong acid (pKa = 3.6), Azosemide is not acidic (pKa = 7.38), which should avour its tissue distribution by passive diffusion. Lipophilicity (logP) of the two drugs is in the same range (2.38 for Azosemide vs. 2.7 for bumetanide). Furthermore, Azosemide has a longer duration of action than bumetanide, which results in superior clinical efficacy26 and may be an important advantage for treatment of brain diseases with abnormal cellular chloride homeostasis.

Bumetanide in use

In 2012 I started bumetanide use at 1mg once a day and after 10 day saw a positive effect. Later I tried 0.5mg twice a day and felt the effect was much reduced.  This is not really a surprise and is highly relevant.

In the later years I increased the dose to 2mg once a day initially to combat the summertime loss of effect due to allergy (inflammation) shifting the balance of NKKC1/KCC2 further towards NKCC1.

Adding a second daily dose of 1mg produced more diuresis but no noticeable benefit. I did not try a second daily dose of 2mg because I did not want yet more diuresis.

Azosemide in use

Azosemide is a so-called long acting diuretic, whereas as Bumetanide is short acting. In practise this means there is no immediate diuresis soon after taking the drug, the diuresis comes later and can be much less. The diuretic response seems to vary widely between people.

The milder diuretic effect is attractive for the second daily dose.

After 6 years the early morning diuresis has become a normal process, but once a day is really enough. So my initial trial was Azosemide in the afternoon, while retaining bumetanide in the morning.

After a week or so there were clear signs that benefits initially enjoyed from Bumetanide have been further extended.  This is exactly as the German research suggested might occur.

After a few weeks of 2mg Bumetanide at 7am and 60mg Azosemide at 4pm I moved on to Azosemide 60mg twice a day.

Is Azosemide 60 mg more potent than Bumetanide 2mg?  It is early days, but quite possibly it is.

Bumetanide is very cheap and we have got used to the early morning diuresis, so I am less bothered with the 7am drug.

After a few years drinking a lot of water, to compensate for the diuresis of bumetanide, has become a habit. So switching from Bumetanide to Azosemide does not stop diuresis, just the urgency.

In future-users going straight to Azosemide might be a good choice.

In our case it means that a potent second daily dose is a very practical option.

Anecdotal changes include:-

Very appropriate use of bad language while driving. We live in a country with some aggressive drivers and Monty hears many people’s verbal responses to this.  Now Monty makes the comments for us.  Everyone noticed and big brother was particularly impressed.

“Car’s coming!” while extracting my car from being boxed in by three other cars in a car park, Monty noticed another car coming towards us. For the first time ever Monty has given me a loud verbal warning of danger.  He has since repeated this.  I have long wondered how a person with severe autism can ever safely drive a car, because they lack situational awareness. Many people with severe autism never learn to safely cross a road on foot.

Monty improved use of his second language. He is declining nouns and translating out loud captions and phrases he sees in cartoons.

One area I hoped would improve was at the dentist. Back in March, before the summer allergy season, we had excellent behaviour at the dentist. This gradually changed and the dentist noted this.  We are slowing repairing 2 teeth without removing the nerves and this requires visits every 7 weeks to gradually remove the decay and grow a new layer of dentine above the nerve. After Azosemide the recent anxiety disappeared and Monty’s behaviour at the dentist went back to being very cheerful and entirely cooperative.  


How to access Azosemide tablets

Thanks to our doctor reader Rene, we know that you can order Japanese drugs in specialist “international pharmacies” in Germany with a valid prescription from any European country.

So all you need is a prescription and the money.

Azosemide is available in Japan as a branded product DIART and as a cheaper generic sold as Azosemide.

The price does vary on which pharmacy you approach in Germany, one pharmacy offers these prices:-

100 Tablets   ~ 74€
           500 Tablets   ~ 286€
         1000 Tablets  ~ 524€


This is much more expensive than generic Bumetanide, but less expensive than many supplements people are buying.

If you live in North America you would have to find a different method, or take a trip to Germany.


Conclusion

Azosemide is still “under investigation”, but the prospects look good.

As with Bumetanide, it was approved as a drug a few decades ago and so there is a great deal of safety information. It is not an experimental drug; we are just looking at repurposing it for autism and other neurological conditions with elevated chloride.

Azosemide for autism is a good example of parent cooperation and self-help. Several parents have helped in this step forward for autism treatment.

More work has to be done to see how others respond and what the most effective dosage is.

I suspect that the optimal treatment will be twice a day and the lack of substantial diuresis in most people makes it more practical than Bumetanide twice a day.  Combining Bumetanide, a short acting diuretic, with Azosemide, a long acting diuretic, is also an option to explore.

The potential risk factors are the same as Bumetanide, disturbed electrolytes, dehydration and at very high doses ototoxicity. Ototoxicity is damage to your ear that can be caused by drugs that include diuretics at very large doses.

Azosemide would appear to have milder side effects than Bumetanide.