UA-45667900-1
Showing posts with label Clonazepam. Show all posts
Showing posts with label Clonazepam. Show all posts

Monday 16 March 2015

Bumetanide and/or low-dose Clonazepam for Autism




Today’s post answers a question left un-answered in earlier posts about the best way to treat the imbalance (excitatory vs inhibitory or just E/I) that exists in the function of the key neurotransmitter GABA in many types of autism.

I first started this blog after the pleasant shock of seeing the positive behavioral and cognitive effect caused by Bumetanide.

This was just copying a recent French clinical trial on humans.

Later on in this blog we came across Professor Catterall who made two experiments in mice to show that the same E/I imbalance could be treated using tiny doses of a drug called Clonazepam.  At doses a hundred time higher, Clonazepam is used to treat seizures and anxiety, but at those doses it dose have side effects.

The mechanism is different to Bumetanide, by the effect was claimed to be the same.

Since Bumetanide has actually been shown effective in a human trial, most readers of this blog have this as their first choice.

I commented that in Monty, aged 11 with ASD, there was indeed an additional positive effect of adding clonazepam to existing bumetanide therapy.  Now having several effective treatments, it is harder to quantify the effect of new ones.  

It remained unknown what would be  the effect of low dose Clonazepam without the Bumetanide. 

Since Bumetanide is known to reduce potassium levels, albeit in a minority of cases, to the extent that supplementation is required, it is necessary to monitor blood levels of potassium.  This is a drawback of the therapy, although the majority of people will not actually need supplementation.  So one regular reader of this blog has tried Clonazepam; and I assume, Maja, without Bumetanide.



Tried Clonazepam 0.025mg in one dose, in the evening, before sleep. After whole 3 days, as you predicted, change was amazing - she become self confident, a bit naughty, but in some joyful, playful way. Started to play more often with friends (by report of teacher end assistant in school). They both reported that she is different, but in good way, even she is harder to manage with (i didn't tell them about new therapy in that time)

Started to play differently, not in pattern she's developed over the years (she has great imaginations, wich is a plus, but has stereotype of ideas in the play).

First of all, we noticed that she is capable to sense odors (she had some kind of anosmia before), than she managed to catch a rhythm to dance (that was a real wow!).

She was speaking with people in the shop (briefly, but adequately)...
There is much more...

Change is still present, but after three weeks are slightly paler . There are not so intense. I'm still overwhelmed, just wont to know if I am missing something.


Thank you Maja for sharing.

In Monty, the effect was not this profound, but then he was already on Bumetanide, and so I was rather expecting no effect.


So, bumetanide and/or low-dose clonazepam for Autism?  

I suggest both, for maximum effect.





P.S.  For the scientists among you

There is another drug, Diamox/Acetazolamide, that I think may also have the same effect as Bumetanide and Low dose Clonazepam.  It is a so-called carbonic anhydrase inhibitor, meaning it forces the kidneys to excrete bicarbonate (HCO3-) and thus makes the blood more acidic.  This has the side benefit of increasing the amount of oxygen in the blood, and hence its use off-label to prevent altitude sickness.  In the brain this change in HCO3- should affect Anion exchanger 3 (AE3) and Sodium dependent anion exchanger (NDAE) which sit alongside the GABAa receptors. By reducing Cl- levels within the cell, the effect would be the same as Bumetanide, which affects the NKCC1 transporter.  This might explain why Diamox, a diuretic, is also used to treat some epilepsy and periodic paralysis.  Note Bumetanide is also used to treat periodic paralysis and some seizures.

This was all covered in a very complicated post:-
GABA A Receptors in Autism – How and Why to Modulate Them

If you are one of those who believe that there is mild hypoxia in some cases of autism, then you could also consider Diamox as an alternative to hyperbaric oxygen therapy.
  










  



Friday 6 February 2015

Tuning GABAa receptors, plus Oxytocin

Today’s post will hopefully not get too complicated.

As has been mentioned in this blog, and also at leading institutions like MIT, it does seem possible to fine-tune certain receptors in the brain that have become dysfunctional in autism.  In the case of MIT they were “tuning” a receptor called mGluR5, which they suggested was either hypo or hyper, in other words too much or too little, depending on what the underlying disease variant was.


This was done with something called an allosteric modulator, either a positive one called PAM, or a negative one called NAM.

They found that a particular glumate receptor, called mGluR5, was dysfunction in many autism-like conditions.  But the nature of the dysfunction varied, so different people would require different treatments to return the receptor performance back to normal (top dead center).   So it really becomes like tuning your car engine. 
As I have progressed in my review of the literature it becomes clear that numerous receptors are “out of tune”; so a better analogy is tuning something like a piano.

  



"Tuning" the shape (but not number) of dendritic spines also appears not to be as fanciful as it sounds.


Back to GABAA

Regular readers will know that one of the key dysfunctional receptors in autism is called GABAA.




This subject is very complicated.  In effect what appears to have happened in autism is that the neurons have not matured as they should, and so GABAA receptors continue to function in their “normal” immature state.  The concentration of chloride remains high since the NKCC1 transporter continues to exist, whereas KCC2/3 should have developed.  The result is that when the receptor is stimulated, instead of causing an inhibitory/calming effect it causes an excitatory effect.





This is fortunately treatable by inhibiting the flow of chloride into the cells, through NKCC1, using a drug called Bumetanide.

However this is not the end of the story.


At least 11 binding sites on GABAA receptors

As you can learn from Wikipedia:-


The active site of the GABAA receptor is the binding site for GABA and several drugs such as muscimol, gaboxadol, and bicuculline. The protein also contains a number of different allosteric binding sites which modulate the activity of the receptor indirectly. These allosteric sites are the targets of various other drugs, including the benzodiazepines, nonbenzodiazepines, barbiturates, ethanol, neuroactive steroids, inhaled anaesthetics, and picrotoxin, among others.

We are particularly interested in the allosteric binding sites.
The only one that is usually referred to, in any depth, is the site for benzodiazepines, but there are at least 11 different binding sites.

Abstract
gamma-Aminobutyric acid (GABA)a receptors for the inhibitory neurotransmitter GABA are likely to be found on most, if not all, neurons in the brain and spinal cord. They appear to be the most complicated of the superfamily of ligand-gated ion channels in terms of the large number of receptor subtypes and also the variety of ligands that interact with specific sites on the receptors. There appear to be at least 11 distinct sites on GABAA receptors for these ligands.




These sites include:-

·        GABA Binding Site
·        Benzodiazepine Binding Site
·        Neurosteroid Binding Site
·        Convulsant Binding Site
·        Barbiturate Binding Site
·        b Subunit Binding Site(s)


In an earlier post I highlighted the discovery by Professor Catterall, that tiny doses of a particular Benzodiazepine drug called Clonazepam had a strange effect on the GABAA receptor.

Clonazepam is a known Positive Allosteric Modulator (PAM) of the GABAA site.  In mature neurons it amplifies the calming effect when the GABA binding site is stimulated.  In mouse models of autism (we assume therefore immature neurons)   where GABA is still excitatory, the tiny dose seemed to switch it to inhibitory.

This suggests a new function, rather than a PAM, the effect was to invert the function entirely.

Now it appears that similar things may indeed also be possible at some of the other 9+ binding sites (I exclude GABA Binding Site itself)

As complicated as this subject may sound, it actually gets even more complicated since the GABA receptors are made up of sub-units.  It appears that mutations in these subunits may be a cause of some epilepsies and, I propose, some “oddities” in autism.

Recent studies have again shown that many genetic dysfunctions found in autism relate to GABA, this short article is not so recent, but gives a nice summary:-


GABA is the major inhibitory neurotransmitter in the brain. It essentially acts as a brake for brain activation. Several aspects of GABA regulation have been linked to ASD, from early brain development to adult brain function.
Variations in GABA receptor subunits have been strongly associated with ASD. GABA receptors come in two major forms: fast, “ionotropic” GABAA receptors let negatively charged chloride ions flow into the neuron, and slow, “metabotropic” GABAB receptors produce chemical messages inside the neuron. GABAA receptors, the most common form in the brain, contain five subunits that shape their properties. Genome-wide association studies have linked the GABAA receptor subunit genes GABRA4 (α4 subunit), GABRB1 (β1 subunit), and GABRB3 (β3 subunit) to autism.[1][2] In addition, deletion of a chromosomal region that contains a cluster of a variety of GABA receptor genes (region 15q11-13) causes Angelman Syndrome.[3][4]
Genes controlling the development of GABA-releasing neurons have also been associated with ASD. Autism-linked variations in the ARX and DLX family of transcription factors interfere with proper expression of GABA.[5][6][7] Absence of such GABA-releasing neurons would negatively affect early brain development as well as adult brain stability.

Notably, variations in other ASD-linked genes affect GABA signaling. New evidence shows that the gene MECP2, the mutation of which causes Rett Syndrome, is critical for normal function of GABA-releasing neurons.[8] When MECP2 expression was blocked in GABAergic neurons of mice, GABA expression and release were reduced and the mice exhibited autistic behaviors.

ASD is a complex disorder that is likely to be caused by a combination of mutations in a variety of genes. GABA receptors are a promising therapeutic target because of their important role in monitoring brain excitation. Identification and exploration of autism-linked mutations in other GABA-related genes could shed light on the pathogenesis of autism.


Over to Switzerland

At the University of Bern a small research group is looking  at the world of  GABAA receptors, here is what they say:-

“Many scientists and companies are put off by the complexity of the field of GABAA receptors, but it is exactly this complexity that offers numerous possibilities of fine-tuned pharmacological interventions.” 


Here is one of their recent papers, that shows both what is known and how very much remains unknown.




Ion Conductance
The GABAA receptors are generally GABA-gated anion channels selective for Cl ions, with some permeability for bicarbonate anions (49). Exceptionally, in C. elegans, a cation-selective GABA-gated channel has been discovered (50). Excitatory neurotransmitters increase the cation conductance to depolarize the membrane, whereas inhibitory neurotransmitters increase the anion conductance to tendentially hyperpolarize the membrane. However, if the gradient for Cl ions decreases due to down-regulation of KCC2 chloride ion transporters, opening of GABAA receptors may cause an outward flux of these anions, leading to depolarization of the membrane and thereby to excitation. This phenomenon has been implicated in neuropathic pain (51). During early development (52) and in neuronal subcompartments (53), GABA similarly confers excitation. 
Although it is relatively simple to address questions at the level of individual receptor subunit isoforms, we can only speculate how many GABAA receptors are expressed in our brain and what their subunit composition is, not to mention subunit arrangement.


Conclusions
Many scientists and companies are put off by the complexity of the field of GABAA receptors, but it is exactly this complexity that offers numerous possibilities of fine-tuned pharmacological interventions.

It may be anticipated that genetic alterations of subunits of the GABAA receptor affect any of the above mentioned processes and thereby contribute to inherited human diseases. A start has been made with the analysis of point mutations that cause epilepsy






Why is all this relevant ?

We have in recent posts discovered that at least two anti-convulsants (carbamazepine and phenytoin) appear to modulate GABAA receptors in unexpected ways when given in tiny doses.

We also found out that valproate also seems to possess such qualities.  The exact mode of action of valproate is not known and perhaps it also acts a modulator of one of the many binding sites on the GABAA receptors.

We do think that valproate is working somehow via GABA.



It turns out that Carbamazepine has also been shown to potentiate GABA receptors made up of alpha1, beta2, and gamma2 subunits.

I have already established that the effect of tiny doses of Valproate is not the same as tiny doses of Clonazepam.

The next step would be to look at the effect of tiny doses of carbamazepine, phenytoin and potentially anything else that modulates those mysterious  GABAAsites.  They are clearly all there for a reason.  It seems that their role goes beyond just the allosteric modulation (amplification/reduction) of GABA’s effect.  It is likely much more subtle and they affect emotional behaviour.

Given the difficulty/impossibility of research on human brains, in the end we may need to revert to the medical world’s often used “scientific” discovery methods known as trial and error, and stumbled upon.

For the moment that will be left to Professors Sigel and Catterall and their mice, and Dr Bird, in Australia, with his human subjects.




Oxytocin and Bumetanide share the same mode of action in autism


Whilst on the subject of GABAA, I should come back to Oxytocin.



The conclusion of this Ben-Ari paper from last year is that Oxytocin and Bumetanide share the same effect in autism; they lower the level of chloride within the neurons and help switch GABA back to inhibitory.

It seems that oxytocin from the mother may be the signal to the developing brain to lower Cl levels.  Oxytocin has many other functions in the body.

Small doses of oxytocin/Syntocinon, have been shown to be effective in some people with autism.  One reader from Portugal has written on this blog how effective it has been in his young son.

Oxytocin/Syntocinon is not available everywhere, but is being reintroduced to the US.



I am wondering if in some people, who are not responders, bumetanide/oxytocin lowers the level of chloride, but not enough to show any benefit.  People using Bumetanide, which has a short half-life, comment that the effect fades through the day and that splitting the same daily dose 3 times a day is beneficial over 2 times a day.  This might suggest that combining Oxytocin with Bumetanide might give better results, by maintaining the downward pressure on chloride levels and keeping GABA more inhibitory and for longer.

In the longer term, an analog of Bumetanide is needed without the diuretic effect and with a delayed release, to maintain a constant effective level.  This is known to the researchers, but would require a big financial investment.

Larger doses of oxytocin are likely to produce effects elsewhere in the body.

If anyone tries the combination of Bumetanide + oxytocin, let me know.





Tuesday 20 January 2015

Treatment of Autism with low-dose Phenytoin, yet another AED

I do like coincidences and I do like not struggling to find a picture for my posts. 

Phenytoin (Dilantin) is a drug that appeared in the novel and film, One Flew Over the Cuckoo's Nest, but then it was not used in low-doses.

Today’s post follows from a comment I received about using very low doses of anti-epileptic drugs (AEDs) in autism.

First of all a quick recap.

Clonazepam was discovered by Professor Catterall, over in Seattle, to have the effect of modifying the action of the neurotransmitter GABA to make it inhibitory, at tiny doses that would be considered to be sub-clinical (i.e. ineffective).

Valproate, another AED, was discovered by one of this blog’s readers also to have an “anti-autism” effect in tiny doses of 1 mg/kg.

A psychiatrist from Australia, Dr Bird, specialized in adults with ADHD has just published a paper about the benefit of low-dose phenytoin in adult autism.  The same psychiatrist has also earlier encountered the effect of low dose valproate in ADHD (autism lite).


Significantly, this beneficial effect of sodium valproate appeared to have a narrow therapeutic window, with the optimal range between 50 and 200mg daily. A complete loss of efficacy frequently occurred above a dose of 400mg.

Case presentation

My patient was a 19-year-old man diagnosed in early childhood with ADHD and ASD

a sublingual test dose of approximately 2mg phenytoin was administered

Within 10 minutes of taking the sublingual phenytoin he reported a reduction in the effort required to contribute to conversation and was able to sustain eye contact both when listening and speaking. He was surprised about the effortless nature of his eye gaze and also commented that he had never done this before.

The following day he started taking compounded 2mg phenytoin capsules in the morning in conjunction with his methylphenidate.

After two weeks both he and his mother stated that his communication with the family had improved and there had been no aggressive outbursts.

Over the next four weeks he became inconsistent in taking the phenytoin, and then ceased altogether. His behavior reverted to the previous pattern of poor social interaction; he became oppositional with outbursts of anger and physical violence.

Nine months later he resumed taking the phenytoin, this time as a single 4mg capsule in the morning. After his first dose there was an improvement of his social behavior similar to his previous response, although there was an apparent deterioration in the late afternoon. The dose was increased from 4mg to 5mg and a larger capsule formulated to try and prolong the release of the phenytoin. This appeared to achieve a more consistent improvement in behavior throughout the day, evident both at home and at work. Increases in the dose above 5mg were not associated with any additional benefit. He remained on the 5mg dose of phenytoin for over 18 months and reported that his work performance had consistently improved sufficient to increase his working hours and his level of responsibility. The violence and destruction at home abated. His confidence improved and for the first time he has established and sustained peer-appropriate friendships.

I hypothesize that, in a similar mechanism to the low-dose clonazepam in this animal model of autism, low-dose phenytoin may enhance GABA neurotransmission, thereby correcting the imbalance between the GABAergic and glutaminergic systems.


Phenytoin

Now let us look at Phenytoin and see if we agree with Dr Bird's hypothesis that the mechanism is the same as low dose clonazepam. 

The accepted method of action is that working as a voltage gate sodium channel blocker.  GABA is not mentioned.


Phenytoin, by acting on the intracellular part of the voltage-dependent sodium channels, decreases the sodium influx into neurons and thus decreases excitability.

The antiepileptic activity of phenytoin was found during systematic research in animals: it suppresses the tonic phase but not the clonic phase elicited by an electric discharge and is not very active against the attacks caused by pentylenetetrazol.

Phenytoin was the first non-sedative antiepileptic to be used in therapeutics.
It decreases the intensity of facial neuralgia and has an antiarrhythmic effect.

 But as I dug a little deeper, I found from 1995:-



 Abstract
We report here that carbamazepine and phenytoin, two widely used antiepileptic drugs, potentiate gamma-aminobutyric acid (GABA)-induced Cl- currents in human embryonic kidney cells transiently expressing the alpha 1 beta 2 gamma 2 subtype of the GABAA receptor and in cultured rat cortical neurons. In cortical neuron recordings, the current induced by 1 microM GABA was enhanced by carbamazepine and phenytoin with EC50 values of 24.5 nM and 19.6 nM and maximal potentiations of 45.6% and 90%, respectively. The potentiation by these compounds was dependent upon the concentration of GABA, suggesting an allosteric modulation of the receptor, but was not antagonized by the benzodiazepine (omega) modulatory site antagonist flumazenil. Carbamazepine and phenytoin did not modify GABA-induced currents in human embryonic kidney cells transiently expressing binary alpha 1 beta 2 recombinant GABAA receptors. The alpha 1 beta 2 recombinant is known to possess functional barbiturate, steroid, and picrotoxin sites, indicating that these sites are not involved in the modulatory effects of carbamazepine and phenytoin. When tested in cells containing recombinant alpha 1 beta 2 gamma 2, alpha 3 beta 2 gamma 2, or alpha 5 beta 2 gamma 2 GABAA receptors, carbamazepine and phenytoin potentiated the GABA-induced current only in those cells expressing the alpha 1 beta 2 gamma 2 receptor subtype. This indicates that the nature of the alpha subunit isoform plays a critical role in determining the carbamazepine/phenytoin pharmacophore. Our results therefore illustrate the existence of one or more new allosteric regulatory sites for carbamazepine and phenytoin on the GABAA receptor. These sites could be implicated in the known anticonvulsant properties of these drugs and thus may offer new targets in the search for novel antiepileptic drugs.



So not only is it possible that phenytoin can modulate the behaviour of the GABAA receptor like Dr Catterall did with Clonazepam, but carbamazepine is yet another known AED with this effect.

So I expect someone will also go and patent low-dose carbamazepine for autism.


We potentially now have a wide range of low dose AEDs for autism.


·        Valproate (1000 to 2000 mg for adults as AED) at a dose of 1-2 mg/kg

·        Clonazepam (up to 20 mg for adults as an AED)   at a dose of 1.7mcg/kg

·        Phenytoin (up to 600 mg for adults as an AED) at a dose of 0.05 mg/kg

·        Carbamazepine (up to 1,200 mg for adults as an AED) no data for the low dose!

We also have two other drugs that are used as AEDs in high doses and have been used in autism with much lower doses.  I do not have any evidence to show that they affect GABAA receptors.  I think their method of action is unrelated to GABA, or sodium channels.
  
·        Piracetam (up to 24 g as an AED) at a dose of 400 to 800 mg

·        Vinpocetine (up to 45mg for adults as an AED)  at a dose of 1 to 5 mg


Both Piracetam and Vinpocetine are classed as drugs in Europe and supplements in the US.  Both are also used as cognitive enhancers. Both have numerous possible modes of action.  They may not help with behavioral problems, but may well improve cognition.

Interestingly, a clinical trial is underway to look at the cognitive effect of moderate doses of Vinpocetine in epilepsy.







Monday 19 January 2015

Modified Use of Anti-Epileptic Drugs (AEDs) at Low Doses in Autism

As readers will be aware, many people with more severe autism are also affected by epilepsy.  Siblings of those with autism also seem to be at greater risk of epilepsy.

There are frequent comments that once starting on AEDs (Anti-Epileptic Drugs) aspects of autism also seem to improve.  This should not be surprising given the suggested action of these drugs and the overlapping causes of epilepsy and autism.

Today’s post is prompted by the observation that in very low, apparently sub-therapeutic, doses some AEDs seem to improve autism in some cases.  This is relevant because the usual high doses of these drugs are associated with some side effects and indeed a small number can be habit forming.


What is epilepsy?


The cause of most cases of epilepsy is unknown.

Genetics is believed to be involved in the majority of cases, either directly or indirectly. Some epilepsies are due to a single gene defect (1–2%); most are due to the interaction of multiple genes and environmental factors.  Each of the single gene defects is rare, with more than 200 in all described.  Most genes involved affect ion channels, either directly or indirectly. These include genes for ion channels themselves, enzymes, GABA, and G protein-coupled receptors.

Much of the above applies equally to autism, including the genetic dysfunctions associated with GABA.  The ion channel dysfunctions in epilepsy are thought to be mainly sodium channels, like Nav1.1.  We previously came across this channel when looking at Dravet Syndrome.


Dravet Syndrome

Dravet Syndrome is rare form of epilepsy, but is highly comorbid with autism.  It is cause by dysfunctions of the SCN1A gene, which encodes the sodium ion channel Nav1.1.  There is a mouse model of this condition, used in autism research.  Dravet Syndrome is known to cause a down-regulation of GABA (the neurotransmitter) signaling.  We saw how tiny doses of Clonazepam corrected this dysfunction in mice.

Known ASD-associated mutations occur in the genes CACNA1C, CACNA1F, CACNA1G, and CACNA1H, which encode the L-type calcium channels Cav1.2 and Cav1.4 and the T-type calcium channels Cav3.1 and Cav3.2, respectively; the sodium channel genes SCN1A and SCN2A, which encode the channels Nav1.1 and Nav1.2, respectively; and the potassium channel genes KCNMA1 and KCNJ10, which encode the channels BKCa and Kir4.1, respectively.



Dr Catterall, the researcher, then went on to test low dose clonazepam in a different mouse of autism model and found it equally effective.  It also appears to work in some human forms of autism.


Sodium Valproate

Valproate is a long established epilepsy drug that has also been used widely as a mood stabilizer and particularly to treat Bipolar Disorder.

One side effect can be hair loss.  Hair loss/growth and also hair greying are frequently connected with drugs and genes linked to autism (BCL-2, biotin, TRH etc).

One regular reader of this blog has pointed out that a tiny dose of Valproate, when combined with Bumetanide, appeared to have a significant and positive effect.  We know that bumetanide works via NKCC1 and the GABAA receptor to make GABA more inhibitory.

Many modes of action are proposed for Valproate, but the most mentioned one is that it increases GABA “turnover”; so it would make sense that having shifted the balance from excitatory to inhibitory, a stimulation to increase GABA signaling might be beneficial.

What is odd is that this is happening at a dose 20 times less than used in epilepsy, bipolar or mood disorders.

The use of Clonazepam, discovered by Dr Catterall, is also at a dose 20 to 50 times less than the typical dose.

Clonazepam and Valproate are both AEDs.  There are not so many of these drugs and while using them at high doses, without dire need, might be highly questionable, their potential effectiveness at tiny doses is very interesting.

Clonazepam is a Benzodiazepine in the table below.






The above table is from the following paper:-




Low Dose Clonazepam

Low dose Clonazepam was shown to be effective by its action of modulating the GABAA receptor to make it more inhibitory.  There are different types of GABAA receptor and the low dose effect was sub-unit specific.  Other benzodiazepine drugs were found to have the opposite effect.

The mouse research showed that the effect only appeared with a narrow range of low dosages.


Low Dose Valproate

Valproate is known to affect sodium channels like Nav1.1, but also some calcium channels.

For an insight into some known potential effects of Valproate, here is a paper from the US National Institute of Mental Health:-




In the paper it highlights the less well known effects of Valproate:-

inhibits HDACs
Modulates Neurotrophic and Angiogenic Factors (BDNF, GDNF, VEGF)
PI3K/Akt Pathway
Wnt/β-Catenin Pathway
MEK/ERK Pathway
Oxidative Stress Pathways
Enhanced Neuroprotection
Enhancing the Homing and Migratory Capacity of Stem Cells

Here is a list of the suggested new applications of Valproate, many highly appropriate to many types of autism:-

*       A. Stroke
*       c. Anti-inflammation
*       d. Angiogenesis
*       e. Neurogenesis
*       b. Anti-inflammation
*       c. BBB protection
*       d. Angiogenesis
*       e. Neurogenesis
*       B. TBI


Having read that paper I am now not surprised that a tiny dose of valproate can have a positive behavioral effect in autism.  What would be interesting to know is how the effects and dominant modes of action vary with dosage.  I presume the dosage has been optimized to control/prevent seizures.

Valproate is a cheap drug and is available as a liquid, so accurate low dosing is possible.  It has been shown to be neuro-protective, even shown promise as a treatment for traumatic brain injury.

While not written about autism, some of you may find the following collection of research interesting:-




It does talk about the wider potential use of Valproate, but not at tiny doses.



Stiripentol

Interestingly, an orphan drug was developed in the European Union to treat Dravet Syndrome.  It is included on the list of AEDs above.

Even though that drug, Stiripentol, is not approved by the FDA, most sufferers in the US are able to acquire it under the FDA’s Personal Importation Policy(PIP).

So it is indeed possible to acquire drugs prior to approval in your home country.

Hopefully, once Bumetanide is approved for autism in Europe, similarly people will be able to access it easily in the US.

I wonder if anybody with Dravet Syndrome has tried low dose Clonazepam.  In theory it should be helpful.