UA-45667900-1
Showing posts with label NSAID. Show all posts
Showing posts with label NSAID. Show all posts

Wednesday 6 May 2015

Tangeretin vs Ibuprofen, as PPARγ agonists for Autism. What about PPARγ for Epilepsy?




Summary of the therapeutic actions of PPARγ in diabetic nephropathy


I did write an earlier post about NSAIDs (Nonsteroidal anti-inflammatory drugs) like Ibuprofen, which I expected to have no effect on autism.

  


However, to my surprise, I found that certain types of autism “flare-up” do respond very well to Ibuprofen.  Based on the comments I received, it seems that many other people have the same experience.

NSAIDs work by inhibiting something called COX-2, but they also inhibit COX-1.  The side effects of NSAIDs come from their unwanted effect on COX-1.

NSAIDs are both pain relievers and, in high doses, anti-inflammatory.  Long term use of NSAIDs is not recommended, due to their (COX-1 related) side effects.


Observational Study

All I can say is that in Monty, aged 11 with ASD, and with his last four milk teeth wobbly but refusing to come out, the increase in the cytokine IL-6 that the body uses to signal the roots of the milk teeth to dissolve seems to account for some of his flare-ups.  I do not think it is anything to do with pain.

This is fully treatable with occasional use of Ibuprofen and then “extreme behaviours” are entirely avoided.


Sytrinol (Tangeretin) vs Ibuprofen

Since Ibuprofen, when given long term, has known problems, I looked for something else.

On my list of things to investigate has been “selective PPAR gamma agonists”, which is quite a mouthful.  The full name is even longer.  The nuclear transcription factor peroxisome proliferator activated receptor gamma (PPARy) regulates genes in anti-inflammatory, anti-oxidant and mitochondrial pathways.  All three of these pathways are affected in autism.

We already know that non-selective PPARy agonists, like pioglitazone, developed to treat type 2 diabetes, can be used to treat autism.  The problem is that being “non-selective” they can have nasty side effects, leading to Pioglitazone being withdrawn in some markets.
  

  
While looking for a “better” PPARγ agonist, I came across the flavonoid Tangeretin, which is commercially available in a formulation called Sytrinol.

An effective PPARγ agonist would have many measurable effects.  The literature is full of natural substances that may, to some degree, be PPARγ agonists, but you might have to consume them by the bucket load to have any effect.

The attraction of Sytrinol is that it does have a measurable effect in realistic doses.  Sytrinol is sold as a product to lower cholesterol.  Tangeretin is a PPARγ agonist and you would expect a PPARγ agonist to improve insulin sensitivity and also reduce cholesterol. There are clinical trials showing this effect of Sytrinol.


Sytrinol (Tangeretin) Experiment

The most measurable effect of using Sytrinol for six weeks is that we no longer need any Ibuprofen.  It is measurable, since I am no longer needing to buy Ibuprofen any more.

About three days a week Monty’s assistant would need to give him Ibuprofen at school.  This all stopped, even though occasional complaints about wobbly teeth continue.

Nobody markets  Sytrinol (Tangeretin) as a painkiller.

Note:- Sytrinol capsules contain a blend of 270mg PMF (polymethoxylated flavones, consisting largely of tangeretin and nobiletin) + 30mg tocotrienols. Nobiletin is closely related to tangeretin, while tocotrienols are members of the vitamin E family.  All three should be good for you.


Tangeretin and Ibuprofen are both PPARγ agonists

The explanation for all this may indeed be that Tangeretin and Ibuprofen are both PPARγ agonists.  Inhibiting COX-2 may have been irrelevant.


  
It may be that by regulating the anti-inflammatory genes, via  PPARγ, the Sytrinol has countered the “flare-up” caused by the spike in IL-6.

Anyway, in the earlier post we did see that research shows that dissolving milk teeth is signalled via increased IL-6 and we do know that increased IL-6, caused by allergies, can trigger worsening autism. 

So it does make sense, at least to me.

Regular uses of Sytrinol/Tangeretin looks a much safer bet than any NSAID.

If anyone tries it, particularly those who regularly use NSAIDs, let us all know.



PPARγ and Epilepsy

If you Google PPARγ and autism you will soon end up back at this blog.

For any sceptics, better to Google PPARγ and Epilepsy.  Epilepsy looks to be the natural progression of un-treated classic autism.  If this progression can be prevented, that should be big news.

Prevention is always better than a cure.  All kinds of conditions appear to be preventable, or at least you can minimize their incidence.  

Here are just the ones I have stumbled upon while researching autism:- Asthma  (Ketotifen), type 2 diabetes (Verapamil), prostate cancer (Lycopene) and many types of cancer (Sulforaphane).

There are of course types of epilepsy unconnected to autism, but epilepsy, seizures and electrical activity are highly comorbid with classic autism




Abstract

Approximately 30% of people with epilepsy do not achieve adequate seizure control with current anti-seizure drugs (ASDs). This medically refractory population has severe seizure phenotypes and is at greatest risk of sudden unexpected death in epilepsy (SUDEP). Therefore, there is an urgent need for detailed studies identifying new therapeutic targets with potential disease-modifying outcomes. Studies indicate that the refractory epileptic brain is chronically inflamed with persistent mitochondrial dysfunction. Recent evidence supports the hypothesis that both factors can increase the excitability of epileptic networks and exacerbate seizure frequency and severity in a pathological cycle. Thus, effective disease-modifying interventions will most likely interrupt this loop. The nuclear transcription factor peroxisome proliferator activated receptor gamma (PPARy) regulates genes in anti-inflammatory, anti-oxidant and mitochondrial pathways. Preliminary experiments in chronically epileptic mice indicate impressive anti-seizure efficacy. We hypothesize that (i) activation of brain PPARy in epileptic animals will have disease modifying effects that provide long-term benefits, and (ii) determining PPARy mechanisms will reveal additional therapeutic targets. Using a mouse model of developmental epilepsy, we propose to (1) elucidate the cellular, synaptic and network mechanisms by which PPARy activation restores normal excitability;(2) demonstrate the significant contribution of mitochondrial health in pathologic synaptic activity in epileptic brain;(3) demonstrate inflammatory regulation of PPARy in epileptic brain;and (4) determine whether PPARy activation extends the lifespan of severely epileptic animals. The proposed studies, spanning in vivo and in vitro systems using a combination of techniques in molecular biology, electrophysiology, microscopy, bioenergetics and pharmacology, will provide insight into the interplay of seizures, mitochondria, inflammation and homeostatic mechanisms. The results will have tremendous, immediate translational potential because PPARy agonists are currently used for clinical treatment of Type II Diabetes. PPARy is under investigation as treatment for a wide variety of other neurological diseases with cell death and inflammation as common denominators;therefore, the results of this proposal will have a broad impact.

Public Health Relevance

Approximately 30% of people with epilepsy do not achieve adequate seizure control with current anti-seizure drugs (ASDs). This medically refractory population has severe seizure phenotypes and is at greatest risk of sudden unexpected death in epilepsy (SUDEP). Therefore, there is an urgent need for detailed studies identifying new therapeutic targets with potential disease- modifying outcomes.




Activation of cerebral peroxisome proliferator-activated receptors gamma exerts neuroprotection by inhibiting oxidative stress following pilocarpine-induced status epilepticus.

Abstract

Status epilepticus (SE) can cause severe neuronal loss and oxidative damage. As peroxisome proliferator-activated receptor gamma (PPARgamma) agonists possess antioxidative activity, we hypothesize that rosiglitazone, a PPARgamma agonist, might protect the central nervous system (CNS) from oxidative damage in epileptic rats. Using a lithium-pilocarpine-induced SE model, we found that rosiglitazone significantly reduced hippocampal neuronal loss 1 week after SE, potently suppressed the production of reactive oxygen species (ROS) and lipid peroxidation. We also found that treatment with rosiglitazone enhanced antioxidative activity of superoxide dismutase (SOD) and glutathione hormone (GSH), together with decreased expression of heme oxygenase-1 (HO-1) in the hippocampus. The above effects of rosiglitazone can be blocked by co-treatment with PPARgamma antagonist T0070907. The current data suggest that rosiglitazone exerts a neuroprotective effect on oxidative stress-mediated neuronal damage followed by SE. Our data also support the idea that PPARgamma agonist might be a potential neuroprotective agent for epilepsy.




CONCLUSION:

The present study demonstrates the anticonvulsant effect of acute pioglitazone on PTZ-induced seizures in mice. This effect was reversed by PPAR-γ antagonist, and both a specific- and a non-specific nitric oxide synthase inhibitors, and augmented by nitric oxide precursor, L-arginine. These results support that the anticonvulsant effect of pioglitazone is mediated through PPAR-γ receptor-mediated pathway and also, at least partly, through the nitric oxide pathway.



Note that elsewhere in this blog I have already highlighted that PPAR alpha agonists also seem to have an effect against epilepsy.  For example in this research:-


          

I was originally interested in PPAR-alpha, because of its role in regulating mast cells.  It seems that PPARγ also affects mast cells.


  


PPARγ modulators – drugs vs neutraceuticals vs functional food

It does seem that many people with inflammatory diseases, epilepsy, autism and even people who are obese, might greatly benefit from selective PPARγ agonists.

The choice would be between drugs, “nutraceuticals” and functional (good) food.

The drugs have not yet arrived that are safe and selective.  The current Thiazolidinedione (TZD) class of drugs TZDs tend to increase fat mass as well as improving insulin sensitivity and glucose tolerance in both lab animals and humans.




Since its identification in the early 1990s, peroxisome-proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor, has attracted tremendous scientific and clinical interest. The role of PPARγ in macronutrient metabolism has received particular attention, for three main reasons: first, it is the target of the thiazolidinediones (TZDs), a novel class of insulin sensitisers widely used to treat type 2 diabetes; second, it plays a central role in adipogenesis; and third, it appears to be primarily involved in regulating lipid metabolism with predominantly secondary effects on carbohydrate metabolism, a notion in keeping with the currently in vogue ‘lipocentric’ view of diabetes. This review summarises in vitro studies suggesting that PPARγ is a master regulator of adipogenesis, and then considers in vivo findings from use of PPARγ agonists, knockout studies in mice and analysis of human PPARγ mutations/polymorphisms.



As usual there are numerous “natural substances” that may also modulate PPAR-γ




A direct correlation between adequate nutrition and health is a universally accepted truth. The Western lifestyle, with a high intake of simple sugars, saturated fat, and physical inactivity, promotes pathologic conditions. The main adverse consequences range from cardiovascular disease, type 2 diabetes, and metabolic syndrome to several cancers. Dietary components influence tissue homeostasis in multiple ways and many different functional foods have been associated with various health benefits when consumed. Natural products are an important and promising source for drug discovery. Many anti-inflammatory natural products activate peroxisome proliferator-activated receptors (PPAR); therefore, compounds that activate or modulate PPAR-gamma (PPAR-γ) may help to fight all of these pathological conditions. Consequently, the discovery and optimization of novel PPAR-γ agonists and modulators that would display reduced side effects is of great interest. In this paper, we present some of the main naturally derived products studied that exert an influence on metabolism through the activation or modulation of PPAR-γ, and we also present PPAR-γ-related diseases that can be complementarily treated with nutraceutics from functional foods.



Conclusion

If you are one of those people successfully using NSAIDs, like Ibuprofen, to reduce autistic behaviors, you might well be in the group that would benefit from Sytrinol/Tangeretin.

If NSAIDs never help resolve your autism flare-ups, Sytrinol/Tangeretin may not help either.

Tangeretin does appear to have other effects, beyond not needing to use Ibuprofen.  It was found to be a potent antagonist at P2Y2 receptors.

Suramin is another potent P2Y2 antagonist and Suramin is showing a lot of promise in Robert Naviaux’s autism studies at the University of California at San Diego.  Suramin is not viewed as safe for regular use in humans.








Thursday 26 February 2015

Inflammation Leading to Cognitive Dysfunction


Today’s post highlights a paper with some very concise insights into how microglial cells become “activated” resulting in the “exaggerated inflammatory response” that many people with autism experience on a daily basis.  

This is very relevant to treatment, which is not usually the objective of much autism research.

I recall reading a comment from John’s Hopkins about neuroinflammation/activated microglia in autism; they commented that no known therapy currently exists and that, of course, common NSAIDs like ibuprofen will not be effective.  But NSAIDs are effective.

As we see in today’s paper, there a least 4 indirect cytokine-dependent pathways leading to the microglia, plus one direct one.
NSAIDs most definitely can reduce cytokine signaling and thus, indirectly, reduce microglial activation.

The ideal therapy would act directly at the microglia, and as Johns Hopkins pointed out, that does not yet exist with today's drugs.  If you read the research on various natural flavonoids you will see that “in vitro” there are known substances with anti-neuroinflammatory effects on microglial activation.  The recurring “problem” with such substances is low bioavailability and inability to cross the blood brain barrier.


Back to Today’s Paper

It was a conference paper at the 114th Abbott Nutrition Research Conference - Cognition and Nutrition



The paper is not about autism, it is about more general cognitive dysfunction.  It is from mainstream science (I checked).

It explains how inflammation anywhere in the body can be translated across the BBB (Blood Brain Barrier) to activate the microglia.  This of course allows you to think of ways to counter these mechanisms.

It also raises the issue of whether or not anti-inflammatory agents really need to cross the BBB.  While you might think that ability to cross the BBB is a perquisite to mitigate the activated microglia, this may not be the case.  Much can be achieved outside the BBB, and we should not rule out substances that cannot cross the BBB.

Very many known anti-inflammatory substances do not cross the BBB.   

  



extracts from the above paper ...








Example – Influenza and Cognition

Neurological and cognitive effects associated with influenza infection have been reported throughout history.

The simplest explanation for these neurocognitive effects is that influenza virus makes its way to the brain, where it is detected by neurons.

However, most influenza strains, including those responsible for pandemics, are considered non-neurotropic, neurological symptoms associated with influenza infection are not a result of direct viral invasion into the CNS.

Moreover, neurons do not have receptors to detect viruses (or other pathogens) directly.

Cells of the immune system do, however, as the immune system’s primary responsibility is to recognize infectious pathogens and contend with them. For example, sentinel immune cells such as monocytes and macrophages are equipped with toll-like receptors (TLR) that recognize unique molecules associated with groups of pathogens (i.e., pathogen-associated molecular patterns). Stimulation of TLRs that recognize viruses (TLR3 and TLR7) and bacteria (TLR4) on immune sentinel cells can have profound neurological and cognitive effects, suggesting the immune system conveys a message to the brain after detecting an infectious agent. This message is cytokine based.

Macrophages and monocytes produce inflammatory cytokines (e.g., interleukin [IL]-1β, IL-6, and tumor necrosis factor-α [TNF-α]) that facilitate communication between the periphery and brain.


Cytokine-dependent Pathways to the Brain

Several cytokine-dependent pathways that enable the peripheral immune system to transcend the blood-brain barrier have been dissected.

Inflammatory cytokines present in blood can be actively transported into the brain.
But there are also four indirect pathways:-

1.     Cytokines produced in the periphery need not enter the brain to elicit neurocognitive changes. This is because inflammatory stimuli in the periphery can induce microglial cells to produce a similar repertoire of inflammatory cytokines. Thus, brain microglia recapitulates the message from the peripheral immune system.

2.     in a second pathway, inflammatory cytokines in the periphery can bind receptors on blood-brain barrier endothelial cells and induce perivascular microglia or macrophages to express cytokines that are released into the brain

3.     In a third pathway, cytokines in the periphery convey a message to the brain via the vagus nerve. After immune challenge, dendritic cells and macrophages that are closely associated with the abdominal vagus have been shown to express IL-1β protein; IL-1 binding sites have been identified in several regions of the vagus as well. When activated by cytokines, the vagus can activate specific neural pathways that are involved in neurocognitive behavior. However, activation of the vagus also stimulates microglia in the brain to produce cytokines via the central adrenergic system 

4.     A fourth pathway provides a slower immune-to-brain signaling mechanism based on volume transmission.  In this method of immune-to-brain communication, production of IL-1β by the brain first occurs in the choroid plexus and circumventricular organs—brain areas devoid of an intact blood-brain barrier. The cytokines then slowly diffuse throughout the brain by volume transmission, along the way activating microglia, neurons, and neural pathways that induce sickness behavior and inhibit cognition.


Can Flavonoids Reduce Neuroinflammation and Inhibit Cognitive Aging?

Flavonoids are naturally occurring polyphenolic compounds present in plants. The major sources of flavonoids in the human diet include fruits, vegetables, tea, wine, and cocoa.  Significant evidence has emerged to indicate that consuming a diet rich in flavonoids may inhibit or reverse cognitive aging

Flavonoids may improve cognition in the aged through a number of physiological mechanisms, including scavenging of reactive oxygen and nitrogen species and interactions with intracellular signaling pathways. Through these physiological mechanisms, flavonoids also impart an anti-inflammatory effect that may improve cognition. This seems likely for the flavone luteolin, which is most prominent in parsley, celery, and green peppers.
Whereas luteolin inhibits several transcription factors that mediate inflammatory genes (e.g., nuclear factor kappa B [NF-κB]and activator protein 1 [AP-1]), it is a potent activator of nuclear factor erythroid 2-related factor 2 (Nrf2), which induces the expression of genes encoding antioxidant enzymes. A recent study of old healthy mice found improved learning and memory and reduced expression of inflammatory genes in the hippocampus when luteolin was included in the diet. Thus, dietary luteolin may improve cognitive function in the aged by reducing brain microglial cell activity.
Hence, the flavonoid luteolin is a naturally occurring immune modulator that may be effective in reducing inflammatory microglia in the senescent brain.

Conclusion
In light of the recent evidence suggesting microglial cells become dysregulated due to aging and cause neuroinflammation, which can disrupt neural structure and function, it is an interesting prospect to think dietary flavonoids and other bioactives can be used to constrain microglia. But how can flavonoids impart this anti-inflammatory effect? Although in vitro studies clearly indicate that several flavonoids can act directly on microglial cells to restrict the inflammatory response, results from in vivo studies thus far do not prove that dietary flavonoids access the brain to interact with microglia in a meaningful way. This is a complicated question to dissect because flavonoids reduce inflammation in the periphery and microglia seem to act like an “immunostat,” detecting and responding to signals emerging from immune-to-brain signaling pathways. Thus, whether dietary flavonoids enter the brain and impart an anti-inflammatory effect on microglia is an interesting question but one that is more theoretical than practical because what is most important is how the immunostat is adjusted, whether that is via a direct or indirect route. However, because flavonoids are detectable in the brain they most likely affect microglia both directly and by dampening immune-to-brain signaling.



Interesting Natural Substances

In no particular order, these are several very interesting flavonoids/carotenoids.  In the lab, they all do some remarkable things.

In humans, they also do some interesting things; how helpful they might be in autism remains to be seen.

Being “natural” does not mean they are good for you and have no side-effects.

Some of the following are very widely used and so you can establish if there are issues with long term use.  It also makes them accessible.


Quercetin (found in many fruits, numerous interesting effects)


and two Quercetin-related flavonoids:-

Kaempferol (widely used in traditional medicine)

Myricetin (has good and bad effects)



Lycopene  (from tomatoes, potent anti-cancer, does not cross the BBB)

  
Luteolin(in many vegetables, like broccoli) 

Apigenin (from chamomile, stimulates neurogenesis, PAM of GABAA, block NDMA receptors, antagonist of opioid receptors …)


Tangeretin (from tangerines, does cross the BBB, has potent effects in vitro)


Nobiletin (from tangerines)

Hesperidin (from tangerines)


Naringin (from Grapefruit, contraindicated with many prescription drugs)


Epicatechin/Catechin  (the chocolate/cocoa flavonoids, do cross the BBB, well researched)








Tuesday 13 January 2015

Cytokines from the Eruption of Permanent Teeth causing Flare-ups in Autism




A recent post looked again at inflammation in autism and some possible therapies to try.  Over Christmas and New Year, Monty, aged 11 with ASD, had occasional outbursts, more typical of his summertime raging, which was later solved using allergy /mast cell therapies.

At least it did let me establish whether Verapamil was a universal “cure” for SIB.  It is not.  It works great for allergy-driven aggressive behaviors, but had no effect on these ones.

Christmas is often a stressful period for many people with, or without, autism; but Monty likes presents and he loves food.

Having pulled out a wobbly tooth on Boxing Day and noticed an apparent behavior change, I thought that perhaps the loss of milk teeth and development of permanent teeth might cause an effect similar to that of his mild pollen allergy.  Monty, in common with many people with autism, has a high pain threshold.  While teething causes well known problems in babies, most children have minimal problems when their milk teeth are replaced by their permanent ones.

I just wondered if perhaps the underlying biological mechanism might provide an inflammatory insult to the highly inflammation-sensitive autistic brain.

Just as histamine provokes a release of inflammatory cytokines like IL-6, perhaps losing your milk teeth does something similar.


Ibuprofen experiment

I decided that I would buy some Ibuprofen, the least problematic NSAID.   A day or two later, Monty declared that another tooth was wobbly and needed to be pulled out.  This tooth was, and remains, well and truly attached.

So I decided that in advance of another, potentially stressful, Christmas event, I would give 10 ml of Ibuprofen.  I did not give it in response to any comment about pain.

It did indeed seem to work.


Skiing

A few days later we were in the Alps for skiing.

Monty can ski, but we always give him a 1:1 instructor.  On the first day, without Ibuprofen, he got agitated during the queuing at the bottom of the beginners’ ski lift.  The instructor thought it was the loud booming music.  It was clear that by the end of the lesson, it was no fun at all.

The following days, I gave 10 ml of Ibuprofen, 20 minutes before the lesson started.  He had a great time, going up by cable car to the top of the mountain and skiing along the blue/red slopes and coming down in a neighboring resort a couple of hours later.  Even a change of instructor on one day, passed without issue.

It might not be scientific proof of the effectiveness of Ibuprofen, but it was enough for me.


The Science

Since this is a scientific blog, arriving home I did some checking on the biology of what happens when you lose your milk teeth.

There is more written about “teething” when you first get your milk teeth, but there is information about “root resorption” of milk teeth and “eruption” of the permanent teeth.  The process is indeed modulated by inflammatory cytokines and transcription factors.

These cytokines will then circulate around the body and cross the blood brain barrier.





Abstract

PURPOSE:
The aim of this study was to investigate whether there are increased levels of the inflammatory cytokines IL-1beta, IL-8, and TNF alpha in the gingival crevicular fluid (GCF) of erupting primary teeth. This increase could explain such clinical manifestations as fever, diarrhea, increased crying, and sleeping and eating disturbances that occur at this time.

METHODS:

Sixteen healthy children aged 5 to 14 months (mean=9.8 months) were examined twice a week over 5 months. Gingival crevicular fluid samples were taken from erupting teeth. As a control, GCF was collected from the same teeth 1 month later. Cytokine production was measured by ELISA. Signs and clinical symptoms were listed. Pearson correlation coefficients were used in the comparisons described below. A paired t test was used to analyze the same variable at different times.

RESULTS:

Fifty teeth of the 16 children were studied. GCF samples were collected from 21 of these teeth. Statistically significant differences (P<.05) were found with regard to the occurrence of fever, behavioral problems, and coughing during the teething period and the control period. During the control period, 72% of the children did not exhibit any clinical manifestations, whereas during the teething period only 22% of the children did not exhibit any clinical manifestations. The study revealed high levels of inflammatory cytokines during the teething period, with a statistically significant difference in TNF alpha levels (P<.05) between the teething period and the control period. Correlations were found between cytokine levels and some of the clinical symptoms of teething: IL-1beta and TNF alpha were correlated with fever and sleep disturbances; IL-beta and IL-8 were correlated with gastrointestinal disturbances; IL-1beta was correlated with appetite disturbances.

CONCLUSIONS:

Cytokines appear in the GCF of erupting primary teeth. The cytokine levels are correlated to some symptoms of teething.



Mechanism of Human Tooth Eruption: Review Article Including a New Theory for Future Studies on the Eruption Process



Physiologic root resorption in primary teeth: molecular and histological events


Root resorption is a physiologic event for the primary teeth. It is still unclear whether odontoclasts, the cells which resorb the dental hard tissue, are different from the osteoclasts, the cells that resorb bone. Root resorption seems to be initiated and regulated by the stellate reticulum and the dental follicle of the underlying permanent tooth via the secretion of stimulatory molecules, i.e. cytokines and transcription factors. The primary root resorption process is regulated in a manner similar to bone remodeling, involving the same receptor ligand system known as RANK/RANKL (receptor activator of nuclear factor-kappa B/ RANK Ligand). Primary teeth without a permanent successor eventually exfoliate as well, but our current understanding on the underlying mechanism is slim. The literature is also vague on how resorption of the pulp and periodontal ligament of the primary teeth occurs. Knowledge on the mechanisms involved in the physiologic root resorption process may enable us to delay or even inhibit exfoliation of primary teeth in those cases that the permanent successor teeth are not present and thus preservation of the primary teeth is desirable. (J. Oral Sci. 49, 1-12, 2007)


Nonsteroidal anti-inflammatory drugs (NSAIDS), such as ibuprofen, work by inhibiting the enzyme COX which converts arachidonic acid to prostaglandin H2 (PGH2). PGH2, in turn, is converted by other enzymes to several other prostaglandins ,which are mediators of pain, inflammation, and fever.


Prostaglandin E synthase


Prostaglandin E2 (PGE2) is generated from the action of prostaglandin E synthases on prostaglandin H2 (PGH2).

PGE2 has various known effects, but one known effect is to increase the pro-inflammatory cytokine IL-6.  The same one that is increased by histamine released from mast cells during allergic reactions.

Elevated interleukin 6 is induced by prostaglandin E2 in a murine model of inflammation: possible role of cyclooxygenase-2.


Abstract

Injection of mineral oils such as pristane into the peritoneal cavities of BALB/c mice results in a chronic peritonitis associated with high tissue levels of interleukin 6 (IL-6). Here we show that increased prostaglandin E2 (PGE2) synthesis causes induction of IL-6 and that expression of an inducible cyclooxygenase, Cox-2, may mediate this process. Levels of both PGE2 and IL-6 are elevated in inflammatory exudates from pristane-treated mice compared with lavage samples from untreated mice. The Cox-2 gene is induced in the peritoneal macrophage fraction isolated from the mice. A cause and effect relationship between increased macrophage PGE2 and IL-6 production is shown in vitro. When peritoneal macrophages are activated with an inflammatory stimulus (polymerized albumin), the Cox-2 gene is induced and secretion of PGE2 and IL-6 increases, with elevated PGE2 appearing before IL-6. Cotreatment with 1 microM indomethacin inhibits PGE2 production by the cells and reduces the induction of IL-6 mRNA but has no effect on Cox-2 mRNA, consistent with the fact that the drug inhibits catalytic activity of the cyclooxygenase but does not affect expression of the gene. Addition of exogenous PGE2 to macrophages induces IL-6 protein and mRNA synthesis, indicating that the eicosanoid stimulates IL-6 production at the level of gene expression. PGE2-stimulated IL-6 production is unaffected by addition of indomethacin. Taken together with the earlier finding that indomethacin diminishes the elevation of IL-6 in pristane-treated mice, the results show that PGE2 can induce IL-6 production in vivo and implicate expression of the Cox-2 gene in the regulation of this cytokine


Indomethacin is another NSAID, like Ibuprofen.



Implications

If, as seems likely, many incidents of anxiety, aggression, explosive behavior, or "meltdowns" are made possible by elevated levels of the pro-inflammatory cytokine IL-6, then the occasional use of drugs known to inhibit IL-6 makes a lot of sense.

Ibuprofen is an NSAID and it is known that some people respond much better to certain NSAIDs and suffer side effects from others.   NSAID drugs work by affecting both COX-1 and COX-2.  It appears that desired effect of NSAIDs comes from their effect on COX-2, while the side effects come from changes made to COX-1.  So it is logical that some NSAIDs are better tolerated than others and for some people a different NSAID may be more appropriate.

Other common drugs also lower IL-6;  leukotriene receptor antagonists like Montelukast (Singulair)  being an example.  This drug is used in autism, but a known side-effect in typical people is to worsen behavior, sometimes severely.  There are plenty of reports of Singulair in autism, some good and some bad.  Since almost all drugs have multiple effects, this is not surprising.

Interestingly, one of the drugs in my Polypill, NAC, is also known to reduce IL-6; but it also reduces the “good” anti-inflammatory cytokines like IL-10.  Perhaps this is why NAC is not beneficial to some people with autism?

Occasional use of Ibuprofen at times anticipated to be stressful makes a lot of sense. 


Conclusion

While it is well known that Ibuprofen relieves pain from teething, low level pain is often completely ignored by people with ASD.  The cytokine release associated with the resorption of the milk teeth and the eruption of the permanent tooth appears to be much more problematic.

Ibuprofen, available OTC, limits the production of pain mediators, called prostaglandins, which in turn stimulate production of the inflammatory cytokine IL-6.

Ibuprofen will reduce both pain and the level of cytokines like IL-6.

In earlier extensive posts on mast cell degranulation in autism, I concluded that the resulting elevated levels of IL-6 likely produced behaviors ranging from anxiety, through aggression, all the way to self-injury.