UA-45667900-1

Monday 23 March 2015

“Epigenopathies” in Autism and Epigenetic Therapy in Current Use - Part 1








Today’s post is about epigenetics, a complex area of science, that has been touched upon in previous posts.

Since none of us are experts in genetics we will focus on the application of epigenetics rather than going into the excruciating details.  Skip over any parts that get too technical. Some of the interesting studies, that are of more academic interest, I will put in a later post.

Epigenetics is just one way in which gene expression (whether genes are turned on or off) can be altered.  There are other ways, which may be equally important. It is evident that epigenetics plays a role in many conditions including autism, schizophrenia, inflammation, asthma, COPD and cancer.

Even based on today’s highly superficial review, there is an immediate, practical, therapeutic prospect, worthy of investigation.  Thanks to Professor Peter Barnes in London and again those irrepressible researchers in Tehran, who were actually trialing theophylline for entirely different reasons.

You do need some basic definitions to understand what is going on in epigenetics, but in essence epigenetic changes are just like bookmarks.


DNA

DNA is a molecule that encodes the genetic instructions used in the development and functioning of all known living organisms.

The problem with DNA is that there is a lot of it.  It has to be very tightly packed since it has to fit inside every cell in your body.  In order to tightly fold up all that DNA you need Chromatin.


Chromatin

Chromatin is a complex of macromolecules found in cells, consisting of DNA, protein and RNA. The primary functions of chromatin are to:-

1) Package DNA into a smaller volume to fit in the cell
2) Reinforce the DNA macromolecule to allow mitosis
3) Prevent DNA damage
4) Control gene expression and DNA replication.

The primary protein components of chromatin are histones that compact the DNA.


Epigenetics – book marks on your DNA

Rather like you might stick post-it notes on your cookery book, or science text book, your body has various mechanism to highlight specific genes.  In effect these bookmarks turn on, or turn off that gene.

So in the jargon:-

Epigenetic changes involve non genetic changes in chromatin structure resulting in changes in gene expression

The important thing to note is that we are not talking about genetic defects, mutations, CNVs etc. which are usually what you might think about.

We all have these epigenetic markers and they are subject to change. Some of these markers become fixed and can then be inherited.  So if your ancestor lived/worked in a highly polluted place, you might have inherited some of his/her DNA tags/bookmarks, this would affect how your genes are expressed today.

The problem occurs when these markers get stuck, or are in the wrong place.  Imagine having a bookmark to remind you how long to roast your chicken and instead it takes you to the page with the recipe for pancakes.

In some inflammatory diseases, like COPD, the “good” genes are turned off and the “bad” genes have got stuck turned on.


Epigenetic change is reversible

Whereas genetic defects are irreversible, epigenetic changes are potentially reversible.  You just need to figure out how to rub them out.


Epigenetic Mechanisms

Just as you might use a variety of objects to mark pages in a book, so nature employs multiple methods to tag your DNA.


1.     DNA methylation

In this process the tag is a methyl group (CH3); to silence the bad gene you add more tags (Stimulate methylation).  To reverse a good gene that has been silenced, remove the tags (use a DNA methyltransferase inhibitors e.g. azacytidine)

Applicable to lung cancer & inflammation
Problems of specificity and targeting


I could only find a current methylation epigenetic therapy for schizophrenia:-




Recently, Satta et al. reported that nicotine decreases DNMT1 expression in GABAergic mouse neurons leading to decreased methylation at the GAD67 promoter and increased GAD67 protein expression. This effect was found to occur as a result of nicotinic receptor agonism. These improve cognitive functioning in schizophrenia, and may suggest in part why 80% of schizophrenia patients use tobacco. The specific nicotinic receptors that mediate this improved cognition have yet to be established. However, an alpha7-nicotine receptor agonist has been shown in small studies to improve cognition in schizophrenia subjects.



2. Histone modification 

Histones are the chief protein components of chromatin, acting as spools around which DNA winds.

There are several types of histone modification, that act as tags on your DNA:-

·        Lysine methylation
·        Arginine methylation
·        Lysine acetylation
·        Serine/Threonine/Tyrosine phosphorylation


The most studied variant is acetylation, this involves the addition or removal of acetyl groups (O=C-CH3)


INHIBITORS

In medicine a group of drugs already exists, called Histone Deacetylase inhibitors (HDAC inhibitors, HDIs).  HDIs are a class of compounds that interfere with the function of histone deacetylase.

HDIs have a long history of use in psychiatry and neurology as mood stabilizers and anti-epileptics. More recently they are being investigated as possible treatments for cancers, parasitic and inflammatory diseases.

The prime example of this is valproic acid, marketed as a drug under the trade names Depakene, Depakote, and Divalproex. In more recent times, HDIs are being studied as a mitigator for neurodegenerative diseases such as Alzheimer's disease and Huntington's disease.  Enhancement of memory formation is increased in mice given the HDIs sodium butyrate or SAHA.  While that may have relevance to Alzheimer's disease, it was shown that some cognitive deficits were restored in actual transgenic mice that have a model of Alzheimer's disease (3xTg-AD) by orally administered nicotinamide, a competitive HDI of Class III sirtuins.



Autism and HDIs 

There is research in mouse models showing that HDIs can improve autism.

Readers of this blog who are using the Supersprouts broccoli powder may not realize that the Sulforaphane produced, is a potent HDI (Histone Deacetylase Inhibitor).

In the autism world, the HDI research is still generally on mice, where social cognition is seen to improve.




Follow up study by Foley:-


In utero exposure of rodents to valproic acid (VPA) has been proposed to induce an adult phenotype with behavioural characteristics reminiscent of those observed in autism spectrum disorder (ASD). Our previous studies have demonstrated the social cognition deficits observed in this model, a major core symptom of ASD, to be ameliorated following chronic administration of histone deacetylase (HDAC) inhibitors. Using this model, we now demonstrate pentyl-4-yn-VPA, an analogue of valproate and HDAC inhibitor, to significantly ameliorate deficits in social cognition as measured using the social approach avoidance paradigm as an indicator of social reciprocity and spatial learning to interrogate dorsal stream cognitive processing. The effects obtained with pentyl-4-yn-VPA were found to be similar to those obtained with SAHA, a pan-specific HDAC inhibitor. Histones isolated from the cerebellar cortex and immunoblotted with antibodies recognising lysine-specific modification revealed SAHA and pentyl-4-yn-VPA to enhance the acetylation status of H4K8. Additionally, the action of pentyl-4-yn-VPA, could be differentiated from that of SAHA by its ability to decrease H3K9 acetylation and enhance H3K14 acetylation. The histone modifications mediated by pentyl-4-yn-VPA are suggested to act cooperatively through differential acetylation of the promoter and transcription regions of active genes.



ACTIVATORS

Histone modification is also implicated in inflammation.  We know that Autism is an inflammatory condition and of course we know which are the much better studied inflammatory conditions.

In terms of the brain, schizophrenia and even sometimes ADHD are better studied.

In the rest of the body arthritis, asthma and COPD are interesting.  Thanks to Peter Barnes at Imperial College, the COPD research is again leading the way.

COPD is like a severe drug resistant form of asthma.  Barnes has almost completely figured out the mechanism and how to best treat it.  One of the findings is to use a common drug called Theophylline in low doses as a HDAC activator.



The usual modes of action of Theophylline are:-

1.     competitive nonselective phosphodiesterase inhibitor, which raises intracellular cAMP, activates PKA, inhibits TNF-alpha  and inhibits leukotriene  synthesis, and reduces inflammation and innate immunity

2.     nonselective adenosine receptor antagonist


The usual dosage involves concentration of 10-20 micrograms/mL blood.  At this level there can be some side effects.

Barnes found that at sub-therapeutic doses (<8 micrograms/mL) , Theophylline actually has a different mode of action; it behaves as a HDAC activator; because the other modes of action were no longer present, no longer were their side effects.  He also showed that as the dose increases, the HDAC activation actually fades.  Another case of less being more.

Once deacetylated, DNA is repackaged so that the promoter regions of inflammatory genes are unavailable for binding of transcription factors such as NF-κB that act to turn on inflammatory activity. It has recently been shown that the oxidative stress associated with cigarette smoke can inhibit the activity of HDAC2, thereby blocking the anti-inflammatory effects of corticosteroids.)

Theophylline is a novel form of adjunct therapy in improving the clinical response to steroids in smoking asthmatics and people with COPD (some of whom do never smoked).


By using a low dose of Theophylline, steroid medication became much more effective allowing lower doses of steroids to be used.

Below is a presentation and one of Barnes’ many papers on this subject:-



Targeting the epigenome in the treatment of asthma and chronicobstructive pulmonary disease.

Abstract

Epigenetic modification of gene expression by methylation of DNA and various post-translational modifications of histones may affect the expression of multiple inflammatory genes. Acetylation of histones by histone acetyltransferases activates inflammatory genes, whereas histone deacetylation results in inflammatory gene repression. Corticosteroids exert their anti-inflammatory effects partly by inducing acetylation of anti-inflammatory genes, but mainly by recruiting histone deacetylase-2 (HDAC2) to activated inflammatory genes. HDAC2 deacetylates acetylated glucocorticoid receptors so that they can suppress activated inflammatory genes in asthma. In chronic obstructive pulmonary disease (COPD), there is resistance to the anti-inflammatory actions of corticosteroids, which is explained by reduced activity and expression of HDAC2. This can be reversed by a plasmid vector, which restores HDAC2 levels, but may also be achieved by low concentrations of theophylline. Oxidative stress causes corticosteroid resistance by reducing HDAC2 activity and expression by activation of phosphoinositide-3-kinase-delta, resulting in HDAC2 phosphorylation via a cascade of kinases. Theophylline reverses corticosteroid resistance by directly inhibiting oxidant-activated PI3Kdelta and is mimicked by PI3Kdelta knockout or by selective inhibitors. Other treatments may also interact in this pathway, making it possible to reverse corticosteroid resistance in patients with COPD, as well as in smokers with asthma and some patients with severe asthma in whom similar mechanisms operate. Other histone modifications, including methylation, tyrosine nitration, and ubiquitination may also affect histone function and inflammatory gene expression, and better understanding of these epigenetic pathways could led to novel anti-inflammatory therapies, particularly in corticosteroid-resistant inflammation.


COPD and Autism

COPD is not autism, but there are some similarities.  Both conditions are associated with chronic oxidative stress and inflammation.

The antioxidant NAC is effective in both conditions.

The Nrf2 activator Sulforaphane (from broccoli) is being trialed for both conditions and is shown effective in much autism.

Inhaled steroids keep people with COPD alive, and oral steroids are beneficial to many people with autism.  Their use in autism is severely limited by side effects of long term oral steroid use.

Some HDI drugs improve autism and some HDI drugs improve COPD.

It would seem that the Epigenopathies of autism and COPD may well overlap.  Could the COPD epigenetic therapy be effective in some autism?

  

Theophylline for Neurological Disorders?

You might have realized that epigenetic therapy should be highly focused, since some genes need to be switched on while others need to be switch off.

Nonetheless that natural question to ask is what is the effect of Theophylline on neurological disorders like autism.

I cannot answer that question; but we can see the effect on ADHD (autism-lite).

It should be noted that the below trial was nothing related to epigenetics and the dosage was the more typical high dosage.  The histone modifying (epigenetic) effect would have been greater at a slightly lower dosage.

At these doses Theophylline would act as a mild stimulant;  note that Theophylline is very closely related to caffeine.  Somewhat counter-intuitively, psychiatrists treat hyperactive people with stimulants.




A total of 32 children with ADHD as defined by DSM IV were randomized
to theophylline and methylphenidate dosed on an age and weight-adjusted basis at 4 mg/kg/day (under 12 years) and 3 mg/kg/day theophylline
(over 12 years) (group 1) and 1 mg/kg/day methylphenidate
(group 2) for a 6-week double-blind and randomized clinical trial. The principal measure of the outcome was the Teacher and Parent ADHD Rating Scale. Patients were assessed by a child psychiatrist, at baseline and at 14, 28 and 42 days after start of the medication.

The results suggest that theophylline may be a useful for the treatment of ADHD. In addition, a tolerable side-effect profile is one of the advantages of theophylline in the treatment of ADHD.



In autism it would be nice if somebody made a trial with 2mg/kg


Let us digress a little and see just what is Theophylline:-


Theophylline is naturally found in cocoa beans. Amounts as high as 3.7 mg/g have been reported in Criollo cocoa beans.

Trace amounts of theophylline are also found in brewed tea, although brewed tea provides only about 1 mg/L, which is significantly less than a therapeutic dose.


As a member of the xanthine family, it bears structural and pharmacological similarity to theobromine and caffeine


Derivatives of xanthine (known collectively as xanthines) are a group of alkaloids commonly used for their effects as mild stimulants and as bronchodilators, notably in the treatment of asthma symptoms. In contrast to other, more potent stimulants like sympathomimetic amines, xanthines mainly act to oppose the actions of the sleepiness-inducing adenosine, and increase alertness in the central nervous system. They also stimulate the respiratory centre, and are used for treatment of infantile apnea. Due to widespread effects, the therapeutic range of xanthines is narrow, making them merely a second-line asthma treatment. The therapeutic level is 10-20 micrograms/mL blood; signs of toxicity include tremor, nausea, nervousness, and tachycardia/arrhythmia.


Theophylline degrades to caffeine.



Inhibitor or Activator of HDAC ?

You may be wondering why we would want an HDAC activator for autism, if we know that Sulforaphane (broccoli) does just the opposite; it is an inhibitor.  The reason is that we have made a few simplifications in the science; there are many types of HDAC, and you might need an inhibitor of one type of HDAC and an activator of another.  Worse still, you might need something on one part of your body and something quite different in another part.

The HDACs can be divided into 3 classes based on their structure and sequence homology: class I consists of HDACs 1, 2, 3, 8, and 11; class II includes HDACs 4, 5, 6, 7, 9, and 10; and class III enzymes are HDACs originally found in yeast and include Sir2-related proteins. Increased HDAC activity and expression are common in many cancers and can result in repression of transcription that results in a deregulation of differentiation, cell cycle, and apoptotic mechanisms. Moreover, tumor suppressor genes, such as p21 appear to be targets of HDACs and are “turned off” by deacetylation. Prostate cancer cells also exhibit aberrant acetylation patterns. The use of class I and class II HDAC inhibitors in cancer chemoprevention and therapy has gained substantial interest.

   
Epigenopathies

When the epigenetic bookmarks appear in the wrong place, trouble will follow.  Genes that should be “off” are turned on and vice versa.

These events have recently been a new name “Epigenopathies”

Just as we can look at many dysfunctions in autism as Channelopathies; those dysfunctions in ion channels and ion transporters, we will be able to consider others as Epigenopathies.

Who first came up with this terminology is not certain, but it might be a clever Frenchman called Mark Millan who works at the Unit for Research and Discovery in Neuroscience, Institut de Recherches Servier, beside the river Seine.

The good news is that here is a very clever neuroscientist with an interest in autism, but not obsessed by it.

France generally has quite an old fashioned view of autism, you will not find much in the way of ABA in France, and the State is certainly not going to be the one paying for it.




Millan nicely summarizes the implications:-

Neurodevelopmental Disorders (NDDs) are accompanied by aberrant "epigenetic" regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy …


In the next post on epigenetics we will look at the research that is specific to  neurodevelopmental disorders.  It is interesting, but does not really have any obvious therapeutic implications.  One point I will highlight in this current post is the following:-

ASD is not associated with systemic differences in global DNA methylation



What this means is that, as far as one key type of epigenetics is concerned, autism is not characterized by too many or too few epigenetic tags; the problem is that they are not all in the right place.  Many alternative therapies in autism are rather simplistic.  It is not a case of too much methylation, or too little.

In the twin study the ASD Twin and his unaffected sibling has almost the same amount of total DNA methylation.


































Wednesday 18 March 2015

The Role of Microglia in the Puzzle of Neuro-inflammation in Autism





Regular readers of this and similar blogs will have noticed that the human body functions in quite irrational ways.  We know why this is; we are the product of a very slow evolutionary process, rather than being a clean-sheet design like your smart phone or iPad.

As a result, nothing is ever quite as simple as it seems and at times the cleverer you are, the less likely you are to find a medical therapy effective in humans.

Such is the case with autism, inflammation and microglia.

It might seem that you can track back inflammation in autism to its “root cause”, which could appear to be those immune cells in the brain, called microglia.  We know they are “activated” in autism and we know that autism is typified by an “over-activated” immune response.

Working with the assumption that autism is a brain dysfunction, you would assume that the effective therapy should be inside the so-called blood brain barrier (BBB).

You would then just look for a potent drug that could “stabilize” the microglia/immune cells in the brain, to calm things down.  Having achieved this, you would sit back and marvel at the behavioral change and improvement in cognitive function.

This was exactly the thought process a few years ago when the US  National Institute of Mental Health (NIMH) got together with the Johns Hopkins researchers to follow up on their findings of chronic inflammation in the brains of people with autism.  Subsequent, third party, research has also confirmed that the microglial cells are “activated” in autism


Trial Description


There is a subgroup of children with autism that appear to develop typically for a period of time, and then lose skills, or regress. A recent study by Vargas and co-workers at Johns Hopkins has demonstrated that the regressive subtype of autism is associated with chronic brain neuroinflammation as exemplified by activation of microglia and astroglia and the abnormal production of inflammatory cytokines and growth factors assayed in both tissue samples (brain banks) and CS. The authors remarked that these responses were similar to those seen in some neurodegenerative disorders such as amyotrophic lateral sclerosis, and that chronic microglia activation appears to be responsible for a sustained neuroinflammatory response that facilitates the production of multiple neurotoxic mediators. Chronic neuroglial activation could be the result of an abnormal persistence of a fetal development pattern. In this scenario neuroglial activation could play a role in initiating and in maintaining the pathology. Alternatively, neuroglial activation may only be a secondary response to the initiating causal factor(s) and not a direct effector of injury. Since neuroglial activation requires the nuclear translocation of the pro-inflammatory transcription factor NF-kappa B, and since inhibitors of NF-kappa-B with good CNS penetrance are available, the role of neuroinflammation in initiating and sustaining the autistic condition can be probed.
The antibiotic minocycline is a powerful inhibitor of microglial activation, apparently through blockade of NF-kappa-B nuclear translocation. Minocycline is neuroprotective in mouse models of amyotrophic lateral sclerosis (ALS) and Huntington's disease and has been recently shown to stabilize the course of Huntington's disease in humans over a 2-year period.
To evaluate the possibility of benefit in autistic children, we propose to conduct an open-label trial of the anti-inflammatory antibiotic minocycline, an agent that reduces inflammation by blocking the nuclear translocation of the proinflammatory transcription factor NF-kappa-B. Minocycline is Food and Drug Administration (FDA)-approved for treatment of a variety of infections and has been widely used for the treatment of adolescent acne. Minocycline is currently in phase III trials for the treatment of Huntington's disease and amyotrophic lateral sclerosis.
This proposal is for an initial 6-month, single-arm, off label, open-label study (with a 3 month extension phase offered to responders) that will evaluate dose safety and efficacy of minocycline in 10 children, ages 3 to 12 years, with a primary diagnosis of autism and a history of developmental regression. The subjects will be evaluated by a diagnostic/behavioral assessment, and the extent of neuroinflammation judged by CSF cytokine/chemokine profiles before and after the 6-month treatment. Subjects will also be given 0.6 mg/kg vitamin B6 twice a day as a prophylactic for possible minocycline induced nausea and vomiting. If the results of this feasibility study are encouraging, we expect to conduct a double-blind, placebo-controlled trial of minocycline therapy.


Nothing happens fast in the world of autism and so this six month study of 10 people (who completed the actual trial) was conceived in 2006, was actually concluded in 2013.  Here is the resulting paper:-
  


Conclusions
Changes in the pre- and post-treatment profiles of BDNF in CSF and blood, HGF in CSF and CXCL8 (IL-8) in serum, suggest that minocycline may have effects in the CNS by modulating the production of neurotrophic growth factors. However, in this small group of children, no clinical improvements were observed during or after the six months of minocycline administration.

Unfortunately, this study showed that a treatment, known to effectively stabilize microglial cells, had no positive effect on autism and actually seemed in some cases to make it worse.

We can conclude from this that stabilizing the microglia will not be the “holy grail” for treating autism.  Rather, the activated microglia is just one part of a complex, and only partially understood process.


Microglia as the Immunostat 

In a recent post we saw how Rodney Johnson referred to the microglia as the “immunostat” of the body.  Like the thermostat on the wall in your home central heating system.



This is indeed an interesting analogy and might explain some of what is going on.

We saw in Johnson’s paper all the ways that the immune system outside the blood brain barrier (BBB) was able to communicate with the microglia.  We should assume that this communication works both ways; something that is usually overlooked.

In a perfectly functioning body, as in a perfectly functioning house, the immunostat/thermostat gives a good indication of the actual state/temperature, as well as the one you intended.  So if you set your room thermostat to 72 Fahrenheit / 22 Celsius  you expect the actual temperature to be 72 Fahrenheit / 22 Celsius.

However, in the real world things do not work like this.

We live in a house with very large south facing windows, a big fireplace, underfloor heating in some places and European-style hot water radiators (in the US they do have them).  So we have at least four sources of heat.  In spite of having clever German electronics to control our heating system, the thermostat in the centre of the house, by itself, is not adequate.

Something similar is happening in body and brain of people with autism, just replace temperature with inflammation.

Just as my house has multiple systems resulting in heating, the human body has numerous processes leading to “inflammation”.  Some of these inflammatory processes are interconnected and some are not.  The net result at any one time can be measured by looking at various cytokine levels, gene expression, microglial activation and numerous other things; there is no single measurable thing called “inflammation”.

There will never be a single wonder anti-inflammatory treatment.

The activated state of the microglia rather than being the ultimate target for intervention may just be a reflection of inflammation elsewhere in the body, or alternatively it may be just the result of oxidative stress in the brain.

Just like after a few years you may need to replace your wall thermostat, because it is giving false data, the clever immunostat, that may be the microglia, could have been disrupted by all that oxidative stress in the brain.  It might even be sending its proinflammatory signal in reverse, back across the BBB, to the rest of the body. Not such a crazy idea?


The future of anti-inflammatory interventions

The NIMH and Johns Hopkins would naturally be disappointed by the results of their study; but it was a study well worth doing.  Hopefully they will pursue other avenues of thought.

We already know that there are numerous ways to achieve a degree of immuno-modulatory change and that in some types of autism there can be a profound behavioral impact.

These range from simple Ibuprofen, to steroids like Prednisone; not to mention those Kv1.3 blockers and ShK-peptides.  These will likely all affect the microglia, but it is not their main mode of action.


Insights

As is often the case, there are useful insights that you can learn from a “failed” trial.

I would imagine that an autistic person with ulcerative colitis would also have activated microglia. Treating that person with minocycline should have some stabilizing influence on the microglia, but without resolving the ulcerative colitis, the pro-inflammatory signals continue to be sent around the body.

Turning down the thermostat in my house, when I have a big log fire blazing, has no effect on the temperature. 

The microglia in the brain of people with autism probably should not be activated; we really need to know why they are activated.

If you can work on the numerous processes/pathways leading to “inflammation” you would most likely also achieve some deactivation of the microglia.

Therefore we should look at things like PPAR gamma which are directly relevant to the pathology of autism, and agonists of PPAR gamma also happen to be “anti-inflammatory” and indeed, in the test tube, some can stabilize microglia.

One, far away, day they will bring those ShK-peptides to the market. 

In the meantime, my current targets are Tangeretin and Nobiletin, flavonoids found in tangerines.


For the scientists among you:-

In addition to being a PPAR gamma agonist, Tangeretin is also a known P2Y2 receptor antagonist.  Both properties are potentially useful.

PPAR gamma has been covered in this blog already.  P2 receptors are a class of Purinergic receptor.  Within the field of purinergic signalling, these receptors have been implicated in learning and memory, locomotor and feeding behavior, and sleep. 

Suramin is used in research as a broad-spectrum antagonist of P2 receptors.

It is Suramin that Robert Naviaux, at UC San Diego, has been researching as a potent autism therapy.  He has shown it effective in mouse models, but the problem is that it is not safe for long term use in humans.  Regular readers should note that, yet again, an anti-parasite drug has been found to have an effect in autism.  Parasites do not cause autism, but understanding them better would be a potential advantage.

Why Suramin, a Century-Old, Anti-Parasitic Drug May Hold the Key to Understanding Autism


Dr. Robert Naviaux's recent finding suggests reversible metabolic syndrome could be at core of autism



The full paper is below:-




In particular, P2Y11 is a regulator of immune response.  There are big gaps in the science and I have no idea if tangeretin affects P2Y11.











Monday 16 March 2015

Bumetanide and/or low-dose Clonazepam for Autism




Today’s post answers a question left un-answered in earlier posts about the best way to treat the imbalance (excitatory vs inhibitory or just E/I) that exists in the function of the key neurotransmitter GABA in many types of autism.

I first started this blog after the pleasant shock of seeing the positive behavioral and cognitive effect caused by Bumetanide.

This was just copying a recent French clinical trial on humans.

Later on in this blog we came across Professor Catterall who made two experiments in mice to show that the same E/I imbalance could be treated using tiny doses of a drug called Clonazepam.  At doses a hundred time higher, Clonazepam is used to treat seizures and anxiety, but at those doses it dose have side effects.

The mechanism is different to Bumetanide, by the effect was claimed to be the same.

Since Bumetanide has actually been shown effective in a human trial, most readers of this blog have this as their first choice.

I commented that in Monty, aged 11 with ASD, there was indeed an additional positive effect of adding clonazepam to existing bumetanide therapy.  Now having several effective treatments, it is harder to quantify the effect of new ones.  

It remained unknown what would be  the effect of low dose Clonazepam without the Bumetanide. 

Since Bumetanide is known to reduce potassium levels, albeit in a minority of cases, to the extent that supplementation is required, it is necessary to monitor blood levels of potassium.  This is a drawback of the therapy, although the majority of people will not actually need supplementation.  So one regular reader of this blog has tried Clonazepam; and I assume, Maja, without Bumetanide.



Tried Clonazepam 0.025mg in one dose, in the evening, before sleep. After whole 3 days, as you predicted, change was amazing - she become self confident, a bit naughty, but in some joyful, playful way. Started to play more often with friends (by report of teacher end assistant in school). They both reported that she is different, but in good way, even she is harder to manage with (i didn't tell them about new therapy in that time)

Started to play differently, not in pattern she's developed over the years (she has great imaginations, wich is a plus, but has stereotype of ideas in the play).

First of all, we noticed that she is capable to sense odors (she had some kind of anosmia before), than she managed to catch a rhythm to dance (that was a real wow!).

She was speaking with people in the shop (briefly, but adequately)...
There is much more...

Change is still present, but after three weeks are slightly paler . There are not so intense. I'm still overwhelmed, just wont to know if I am missing something.


Thank you Maja for sharing.

In Monty, the effect was not this profound, but then he was already on Bumetanide, and so I was rather expecting no effect.


So, bumetanide and/or low-dose clonazepam for Autism?  

I suggest both, for maximum effect.





P.S.  For the scientists among you

There is another drug, Diamox/Acetazolamide, that I think may also have the same effect as Bumetanide and Low dose Clonazepam.  It is a so-called carbonic anhydrase inhibitor, meaning it forces the kidneys to excrete bicarbonate (HCO3-) and thus makes the blood more acidic.  This has the side benefit of increasing the amount of oxygen in the blood, and hence its use off-label to prevent altitude sickness.  In the brain this change in HCO3- should affect Anion exchanger 3 (AE3) and Sodium dependent anion exchanger (NDAE) which sit alongside the GABAa receptors. By reducing Cl- levels within the cell, the effect would be the same as Bumetanide, which affects the NKCC1 transporter.  This might explain why Diamox, a diuretic, is also used to treat some epilepsy and periodic paralysis.  Note Bumetanide is also used to treat periodic paralysis and some seizures.

This was all covered in a very complicated post:-
GABA A Receptors in Autism – How and Why to Modulate Them

If you are one of those who believe that there is mild hypoxia in some cases of autism, then you could also consider Diamox as an alternative to hyperbaric oxygen therapy.
  










  



Wednesday 11 March 2015

Wombles and Music Therapy for Autism



Instead of giving you my rather heavy post about epigenetics and autism, today’s post is much more down to earth.

Medical opinion in North America has long been very much in favour of ABA (Applied Behavioural Analysis) as the only “scientifically proven” therapy for the core symptoms of autism.

This evidence is actually quite flaky, so much so that in the very "evidence driven" United Kingdom, their highly regarded National Institute for Health and Care Excellence (NICE) does not even mention ABA, let alone endorse it, in their guidance note in how to manage autism.



ABA is a potent tool to manage autism and provides a flexible framework to teach people who do not respond to traditional teaching methods.  However, it is no cure for autism and the old studies suggesting that almost 50% of kids going to an intensive ABA program will lose their autism diagnosis after two years are nonsense.  They just serve to over-extend the expectations of parents entering ABA therapy and increase guilt among those not able to afford it.

All of our ABA consultants to date have agreed with this view.  In highly intelligent kids with mild autism, maybe 50% can improve so far to lose their diagnosis; but maybe they would have done so after two years without ABA?


Selective interpretation of evidence

A therapy that is sometimes included alongside swimming with the dolphins, as being non-evidence based, is music therapy.

Music and dance is used extensively with many typical kids of kindergarten age, mainly as a fun activity.

I myself would have previously thought that was all there was to it.  But after several years of observing the effect of lots of music on Monty, aged 11 with ASD, there really is much more to it.  

Monty’s original assistant was (and remains) really into music, and so he had lots of music and dance from a very young age.  A few years later we bought a piano and he started piano lessons.

It appears that for some people, singing is easier than talking, or perhaps it is that music encourages communication.  We saw in a post long ago that singing lowers your level of cortisol, the stress hormone. 

Music (and dance) appear to unlock something deep within. (Perhaps the music gene)


Who are the Wombles

The Wombles are furry inhabitants of a burrow on Wimbledon Common in London, England.  They live by collecting up and reusing all the rubbish humans leave behind.

The Wombles were created by British author Elisabeth Beresford, and originally appeared in a series of children's novels from 1968. A stop motion animated series of five minute episodes was made between 1973 and 1975.  A new TV series, with CGI animation, is in production, along with a movie.


Wombles on Sunday Morning

Last Sunday morning, when half the house was sleeping, Monty was sitting in the kitchen with his iPad; then he selected his Wombling song on Youtube.  He then started singing his own mixture of the original lyrics and his creation, at full volume.  Listen a bit harder and he was singing in two languages.

Given most kids with classic autism really struggle to communicate, this is quite remarkable and light years ahead of where he used to be.

I am a convert to both ABA and music therapy, but I do not think you can prove the effectiveness of either.  Anecdotal evidence, but lots of it, is as good as it can realistically get.


The moral of the story is that if you set the bar too high, you will reject valid therapies alongside all the quack therapies. 

Also, you may have to persevere for a long time to kindle that interest in music; but as our ABA consultant commented recently, the biggest problem her older clients have, is that they have nothing to do – no hobbies, no interests.  Keep up with those lessons.








  

Thursday 5 March 2015

Gingerols and Statins (as Farnesyltransferase inhibitors) for RASopathies and Some Autism

Today’s post was driven by another attempt not to take a statin.


Statins are among the world’s most prescribed, and yet most maligned, drugs.  Hundreds of millions of people take a statin drug every day to lower their cholesterol, but a small, vocal minority complain about muscle pains, memory loss and even type 2 diabetes.

Since my Polypill is evidently a therapy, and not a cure, for autism, the odds are that it will be needed life-long.  Regardless of the apparent lack of side-effects, nobody should be taking drugs/supplements that are not really needed.  Atorvastatin (Lipitor/Sortis) is part of my Polypill for the type of autism affecting Monty, aged 11, with ASD.

Every time I stop the statin part of my Polypill therapy, I end up starting it again after only a one day break.  I notice all sorts of little behavioral changes that I really do not want to see.   

These changes involve loss of initiative, flexibility and motivation.  I really do not see how these would be measured in any existing behavioral assessment of autism.  These little changes make a big difference in daily life, so-called adaptive behavior.

In case you are wondering, the types of people with autism that I think might benefit from statins, have high cholesterol and some of the following:-

·        Non-verbal, or people who are slightly verbal, but choose not to speak
·        Poor ability to generalize skills already mastered in 1:1 therapy
·        Great difficulty in separating
·        Great difficulty in coping with change

As with some other elements of the Polypill, there are numerous reasons why statins could/should help in autism.  Today I found yet another one and an interesting non-drug alternative.


Why Statins?

I originally choose statins as a possible therapy, based on their ability to control pro-inflammatory cytokines (e.g. cytokine storms), and their known neuro-protective properties (e.g. reduce mortality after a traumatic brain injury).

I then noted they also affect some autism target genes, such as PTEN and BCL-2.

I did also note that statins were being researched to treat Neurofibromatosis, a single gene condition that is frequently comorbid with an “autism” diagnosis.

Today’s post is really about why statins should help in Neurofibromatosis and what else shares the same mechanism of action. 

Putting aside cytokines, PTEN and BCL-2, this new mechanism (excessive RAS/ERK signaling) might also be active in broader autism and Intellectual Disability / MR.

The other recent development was a study at UCLA that looked at a rare condition called Noonan Syndrome.  Noonan Syndrome and Neurofibromatosis are members of a group of conditions called RASopathies.


The RASopathies are developmental syndromes caused by mutations in genes that alter the Ras subfamily and Mitogen-activated protein kinases that control signal transduction.


Drawing upon Silva’s previous research on neurofibromatosis 1, another Ras-influenced disease, the UCLA team treated the mice with lovastatin, an FDA-approved statin drug currently in wide clinical use.

When adult mice with Noonan were treated with lovastatin in the UCLA study, the drop in Ras activity dramatically improved their memory and ability to remember objects and navigate mazes.

We were amazed to see that statin treatment restored the adult animals’ cognitive functions to normal. Traditionally, science assumes that therapy needs to start in the fetal stage to be effective,” explained Silva. “Our research suggests that the leading gene mutation responsible for Noonan syndrome plays critical roles not only in fetal development, but also in how well the adult brain functions.”

According to Silva, UCLA’s approach could help the estimated 35 million Americans who struggle with learning disabilities

The paper itself:-





RAS/ERK Inhibitors

For those of you more interested in the implications, rather than the science, here they are.

Known RAS inhibitors include:-


·        Statins, the popular cholesterol reducing drugs.  The “lipophilic” statins (Simvastatin, Lovastatin, Atorvastatin) can cross the blood brain barrier

·        Farnesyltransferase inhibitors, these are mainly anti-cancer research compounds, but one is the flavonoid Gingerol


Gingerol, is the active constituent of fresh ginger.  It is normally found as a pungent yellow oil, but also can form a low-melting crystalline solid.
Cooking ginger transforms gingerol into zingerone, which is less pungent and has a spicy-sweet aroma. When ginger is dried, gingerol undergoes a dehydration reaction forming shogaols, which are about twice as pungent as gingerol. This explains why dried ginger is more pungent than fresh ginger.
Ginger also contains 8-gingerol, 10-gingerol, and 12-gingerol.

Physiological effects

Gingerol seems to be effective in an animal model of rheumatoid arthritis.

Gingerol has been investigated for its effect on cancerous tumors in the bowel, breast tissue, ovaries, the pancreas, among other tissues, with positive results.



Neurofibromatosis, Behavioral dysfunction and RAS signaling

Neurofibromatosis Type 1: Modeling CNS Dysfunction


Neurofibromatosis type 1 (NF1) is the most common monogenic disorder in which individuals manifest CNS abnormalities. Affected individuals develop glial neoplasms (optic gliomas, malignant astrocytomas) and neuronal dysfunction (learning disabilities, attention deficits). Nf1 genetically engineered mouse models have revealed the molecular and cellular underpinnings of gliomagenesis, attention deficit, and learning problems with relevance to basic neurobiology. Using NF1 as a model system, these studies have revealed critical roles for the NF1 gene in non-neoplastic cells in the tumor microenvironment, the importance of brain region heterogeneity, novel mechanisms of glial growth regulation, the neurochemical bases for attention deficit and learning abnormalities, and new insights into neural stem cell function. Here we review recent studies, presented at a symposium at the 2012 Society for Neuroscience annual meeting, that highlight unexpected cell biology insights into RAS and cAMP pathway effects on neural progenitor signaling, neuronal function, and oligodendrocyte lineage differentiation.

Working memory, which, like attention, depends on intact prefrontal circuitry, is also impaired in both Nf1+/− mice and in individuals with NF1. Functional imaging studies showed that the working memory impairments of NF1 subjects correlated with hypoactivation in the prefrontal cortex, which may reflect increased GABA-mediated inhibition in prefrontal cortical circuits of Nf1+/− mice. Remarkably, a dose of a GABA receptor inhibitor (picrotoxin), which caused deficits in working memory in control mice, rescued the working memory deficits of Nf1+/− mice, a result consistent with the hypothesis that increased inhibition is at the root of the working memory deficits associated with NF1.

Increases in RAS/ERK signaling in Nf1+/− mice have been implicated in the working memory, attention, and spatial learning deficits of these mice. Genetic and pharmacological manipulations that target the RAS/ERK signaling pathway were shown to rescue the physiological and behavioral deficits of Nf1+/− mice. Importantly, pharmacological manipulations that impair the isoprenylation of RAS (statins, farnesyl transferase inhibitors), and therefore decrease the levels of RAS/ERK signaling, also rescue key electrophysiological and behavioral phenotypes of Nf1+/− mice. Indeed, at concentrations that do not affect signaling, physiology, or behavior of wild-type controls, statins reverse the signaling, electrophysiological, attention, and spatial learning deficits of Nf1+/− mice. Prompted by these findings, clinical studies are currently underway to test the efficacy of statins as a treatment for the behavioral and cognitive deficits in individuals with NF1.

Similar to individuals with NF1, Nf1 mutant mice also show attention deficits. These deficits are thought to be key contributors to academic and social problems in children with NF1. Using an additional Nf1 GEM strain to study attention, in which the Nf1+/− mutation is combined with Cre-driven homozygous Nf1 gene deletion in GFAP-expressing cells (Nf1 OPG mouse), it was found that reduced striatal dopamine was responsible for the observed attention deficits. Treatment with methylphenidate (but not with drugs that affect RAS) reversed the attention deficits of these Nf1 OPG mutants, suggesting that defects in brain catecholamine homeostasis contribute to the attention deficits observed. These results suggest that, in addition to drugs that affect RAS/ERK signaling, drugs that manipulate dopaminergic function could also be used to treat the cognitive deficits associated with NF1.

Treatments and future directions

With the availability of genetically engineered mouse models for NF1-associated CNS pathology, it now becomes possible to envision a pipeline in which fundamental basic science discoveries lead to the identification of new cellular and molecular targets for therapeutic drug design, culminating in preclinical evaluation before testing in patients with NF1. First, the success of Nf1 mouse model implementation has already resulted in the clinical evaluation of lovastatin in children with NF1-associated learning deficits and rapamycin analogs for the treatment of glioma. Second, mouse models afford an opportunity to envision specific features of NF1 as distinct diseases defined by the timing of NF1 gene inactivation or the particular cell of origin. Similar to other cancers, the identification of molecular or cellular subtypes of NF1-associated nervous system tumors or learning/behavioral problems may result in more individualized treatments with a higher likelihood of success. Third, as we further exploit these powerful preclinical models, additional cellular and molecular targets may emerge as candidates for future therapeutic drug design. In this regard, one could envision more effective therapies resulting from the combined use of targeted inhibition of multiple growth control pathways regulated by neurofibromin in the neoplastic cell (NF1-deficient neuroglial precursor) or dual targeting of non-neoplastic (microglia) and neoplastic cells within NF1-associated CNS tumors.


RASopathies & Autism



Higher prevalence and severity of autism traits in RASopathies compared to unaffected siblings suggests that dysregulation of Ras/MAPK signalling during development may be implicated in ASD risk. Evidence for sex bias and potential sibling correlation suggests that autism traits in the RASopathies share characteristics with autism traits in the general population and clinical ASD population and can shed light on idiopathic ASDs.


This systematic study offers empirical support that autism traits are associated with developmental Ras/MAPK pathway dysregulation. It suggests that individuals affected by RASopathies should be evaluated for social communication challenges and offered treatment in these areas. This is the first strong evidence that multiple members of a well-defined biochemical pathway can contribute to autism traits. Future studies could explore potential modifying or epistatic factors contributing to variation within the RASopathies and the role of Ras/MAPK activation in idiopathic ASDs.



RAS/ERK Inhibitors

Inhibition of Ras for cancer treatment: the search continues



Discussion

Despite intensive effort, to date no effective anti-Ras strategies have successfully made it to the clinic. We present an overview of past and ongoing strategies to inhibit oncogenic Ras in cancer.

Conclusions

Since approaches to directly target mutant Ras have not been successful, most efforts have focused on indirect approaches to block Ras membrane association or downstream effector signaling. While inhibitors of effector signaling are currently under clinical evaluation, genome-wide unbiased genetic screens have identified novel directions for future anti-Ras drug discovery.




Conclusion

In some people with “autism” statins are an effective therapy.  Higher doses of statin are associated with side effects.  By knowing the principal mode of action of statins in autism, we might be able to develop a more potent therapy – STATIN PLUS.

On the basis of today’s post, investigating Farnesyltransferase inhibitors, as inhibitors of RAS signalling, looks an interesting option.

Gingerol is available as an inexpensive, supposedly standardized, productGinger itself has been safely used in traditional medicine for thousands of years.

Perhaps Gingerol is the PLUS and for people unwilling to use a statin, perhaps Gingerol could be the statin?


The current medical view on ginger:-


Recent preliminary results in animals show some effect in slowing or preventing tumor growth. While these results are not well understood, they deserve further study. Still, it is too early in the research process to say whether ginger will have the same effect in humans.



  
Note on Intellectual Disability / MR

Regular readers may recall, I have commented that not only are many types of autism partially treatable, but so should be some types of Intellectual Disability / MR.  This same theme about treating cognitive dysfunction is raised in the paper below.

In the days when most readers of this blog were at school, 30-50% of people with an autism diagnosis were also diagnosed with Intellectual Disability / MR.  This is no longer the case; as autism diagnoses have skyrocketed in Western countries, diagnosis of Intellectual Disability / MR has not followed it.

People born today with what used to be called autism, often suffer from epilepsy and impaired cognitive function.  They do now tend to get rather sidelined by the much wider scope of the “autism” diagnosis used today, mainly in Anglo-Saxon countries (where most research is carried out).

The point where this matters is in clinical trials, since many of the milder autisms (now even being called “quirky autism”) may be caused by entirely different dysfunctions.  The observational diagnosis of “autism” is enough to enter most trials, but as we have seen in this blog, autism is not a true diagnosis; it is merely a description of symptoms.  It is like going to the doctor and saying “I think I might have a head ache” and after some questions, the doctors sits back and says “yes, you have a headache”.  You want to know why you have a head ache and how to make it go away.



A fraction of the cases of intellectual disability is caused by point mutations or deletions in genes that encode for proteins of the RAS/MAP Kinase signaling pathway known as RASopathies. Here we examined the current understanding of the molecular mechanisms involved in this group of
genetic disorders focusing in studies which provide evidence that intellectual disability is potentially treatable and curable. The evidence presented supports the idea that with the appropriate understanding of the molecular mechanisms involved, intellectual disability could be treated pharmacologically and perhaps through specific mechanistic-based teaching strategies.