UA-45667900-1

Tuesday 17 October 2023

Takeaways from Thinking Autism 2023


I did present at the Thinking Autism 2023 conference in London recently.  I was last there in 2019 and there were many familiar faces.

Emotions were very much on show - joy, desperation, bewilderment, hope, fear, frustration and more.

The United Kingdom is amongst the worst countries in the world if you want to treat autism.  Even the idea of treating autism can get you into trouble. For severe autism it is much better to say treating ID (intellectual disability) – what sane person could object to that?

My takeaways are very specific to me, but here they are anyway.

 

So many doctors!

This year I was approached by many doctors who have children with ASD.  Among them were GPs, pediatricians, a neurologist, and a psychiatrist.

When you understand the basis of autism it is not surprising that so many doctors have kids with autism, particularly doctors married to a doctor.

 

Fertility treatment increasing the risk of autism

I did mention in my book the link between difficulty conceiving and having children with autism. Mothers who have had miscarriages are at risk of having a child with autism and children produced via IVF therapy have an elevated chance of autism.

One of the speakers at the conference, who uses diet as a therapy, told us that 30-40% of her patients where conceived by IVF therapy.  Wow – I thought. They are mainly children with milder autism, only 10% of her patients have severe autism.

 

From struggling to get on IVIG to how to come off it

Many parents struggle to get onto IVIG therapy for their child.  It is very expensive and, being an intravenous therapy, it is not so easy to administer to a child with severe autism.

Having finally got on IVIG therapy and responded well to it, how do ever wean the child off it, without losing all those gains?

This was a side issue arising from the conference and is an issue to some other readers of this blog.

What is very interesting is the potential to give IVIG therapy just once to very young children who developed normally but then suffer a regression into “autism.”  It seems to work for some. You might get it in Russia, but don’t bother asking in the UK.

 

My son is 14, I have tried everything else now I am ready for pills

Some people do respond well enough to dietary modification and OTC supplements, but more severe autism likely needs pharmaceuticals. For one mother at the conference she had come to this conclusion.  It is never too late to start to treat severe autism. Good luck to her!

 

Never give up

Never give up was the last point on my talk.

One mother at the conference was a very good example. She had finally had her twins examined at the UK’s top children’s hospital, Great Ormond Street Hospital (GOSH).  They have had MRIs, lumbar punctures to get spinal fluid samples and they have had genetic testing.  That is a triumph in the UK health system.

As she told us, she had to play the cancer card. She told her doctors “why do you go to such great lengths to save my life from cancer and yet do nothing for my twin boys with severe autism?”

Now one has a diagnosis of cerebral folate deficiency and one has a mutation is DISC1, a schizophrenia gene already covered, with therapy ideas, in my blog.  High dopamine in spinal fluid was only to be expected - it is a feature of schizophrenia. Light is at the end of the tunnel.  This mother was also very helpful to other mothers present.

 

School reporting on parent treating autism

I was disappointed to hear that a school had reported one mother for treating her child’s autism.

 

Ketones really do benefit some!

I did write a lot about the multiple possible benefits of ketones/BHB in autism.

The week before the conference one mother wrote to tell me that both she and her child with autism respond well to HVMN Ketone-IQ.

I knew our doctor reader Agnieska was a big fan of the BHB ester product Ketoforce, which seems to have disappeared during Covid.

At the conference a Spanish psychiatrist was listing the therapies in my blog that have helped his son and they included NAC, Bumetanide and BHB.

There are several new ketone products based on diol ketone esters, like HVMN Ketone-IQ.

Our reader Daniel mentioned very recently that he is using a product called DeltaG, a proprietary blend of diol ketone esters. HVMN Ketone-IQ is a pure diol ketone ester, while DeltaG is a proprietary blend of diol ketone esters.

The active ingredient in Ketone-IQ is R-1,3 Butanediol, also referred to as R-1,3-Butylene glycol, which maintains FDA GRAS status as a flavor molecule.

 

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=173.220

 

1,3-Butylene glycol (1,3-butanediol) may be safely used in food in accordance with the following prescribed conditions:

(a) The substance meets the following specifications:

(1) 1,3-Butylene glycol content: Not less than 99 percent.

(2) Specific gravity at 20/20 deg.C: 1.004 to 1.006.

(3) Distillation range: 200deg.-215 deg.C.

(b) It is used in the minimum amount required to perform its intended effect.

(c) It is used as a solvent for natural and synthetic flavoring substances except where standards of identity issued under section 401 of the act preclude such use.

 

This raw ingredient is very cheap.

Once it is packaged up as a supplement, it becomes very expensive.

As Agnieszka mentioned on the conference sidelines, you do have to look at the ingredients. In HVMN Ketone-IQ there is potassium benzoate as the preservative.  Potassium benzoate is a DAO inhibitor. DAO, or diamine oxidase, is an enzyme that breaks down histamine, a compound that can cause a variety of symptoms in histamine-sensitive people, such as headache, flushing, hives, and diarrhea.

 

“If my son can take the bus aged 20, I’d be happy”

One doctor mother showed me a video of her untreated young son with severe autism.  I told her how I have treated my son since 2012 and what the result has been. He passed his high school exams (GCSEs) in maths, science, geography, and English.  Now he has learnt how to travel independently from home by bus.  Time for those pills.






Thursday 5 October 2023

The Guardian of the Genome – the role of P53 in Cancer Prevention and in increasing/decreasing Autistic Behaviors



 

The p53 protein is called the guardian of the genome because it plays a critical role in maintaining genomic stability. It does this by surveying the genome for signs of DNA damage. If p53 detects DNA damage, it activates a number of different cellular responses to prevent the damaged cell from dividing and passing on that damage. These responses can include:

  • p53 can halt the cell cycle giving the cell time to repair the damaged DNA.
  • p53 can activate genes that are involved in DNA repair.
  • If the DNA damage cannot be repaired, p53 can trigger cell death.

p53 protects your genome by preventing damaged cells from dividing and passing on DNA damage.

 

What about p53 and autism?

We have seen many times that cancer genes overlap with autism genes; that is the case today with p53. The protein p53 acts like a transcription factor turning on or off key genes in the brain that affect learning and behavior. 


Protein p53’s Role in Autism-like Behavior and Memory

Scientists have discovered a direct link between the protein p53 and autism-like behavior in mice. The researchers studied the effects of manipulating p53 levels in the mouse hippocampus.

Reduced levels resulted in repetitive behavior, diminished sociability, and impaired learning, especially in male mice. This pivotal work uncovers the intricate role of p53 in neurodevelopmental disorders like autism.

Key Facts:

1.     Lowered hippocampal p53 levels in mice led to repetitive behavior, decreased sociability, and hindered hippocampus-dependent learning.

2.     Elevated p53 levels were observed during periods of enhanced communication between hippocampal neurons, related to positive learning outcomes.

3.     Previous research from 2018 identified p53’s significant role in irregular brain cell activity seen in both ASD and epilepsy.

 

In this study, Tsai and his colleagues lowered hippocampal p53 levels in mice, looking for changes in gene expressions related to behavior. They observed that the decreased p53 levels: 

·        Promoted repetitive behavior in mice.

·        Reduced sociability in mice.

·        Impaired hippocampus-dependent learning and memory, especially in male mice.

The researchers also observed that p53 levels were elevated after a period of active communication between hippocampal neurons called long-term potentiation. Flexible neuron firing — known as plasticity — is related to positive learning and memory outcomes. 

In a 2018 study, Tsai and his colleagues identified p53 as a key protein involved in the irregular brain cell activity seen in ASD and epilepsy. In future studies, they aim to explore how p53 coordinates the expression of those autism-linked genes to guide behavior. 

 

The full paper: 

Tumor suppressor p53 modulates activity-dependent synapse strengthening, autism-like behavior and hippocampus-dependent learning

Synaptic potentiation underlies various forms of behavior and depends on modulation by multiple activity-dependent transcription factors to coordinate the expression of genes necessary for sustaining synaptic transmission. Our current study identified the tumor suppressor p53 as a novel transcription factor involved in this process. We first revealed that p53 could be elevated upon chemically induced long-term potentiation (cLTP) in cultured primary neurons. By knocking down p53 in neurons, we further showed that p53 is required for cLTP-induced elevation of surface GluA1 and GluA2 subunits of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Because LTP is one of the principal plasticity mechanisms underlying behaviors, we employed forebrain-specific knockdown of p53 to evaluate the role of p53 in behavior. Our results showed that, while knocking down p53 in mice does not alter locomotion or anxiety-like behavior, it significantly promotes repetitive behavior and reduces sociability in mice of both sexes. In addition, knocking down p53 also impairs hippocampal LTP and hippocampus-dependent learning and memory. Most importantly, these learning-associated defects are more pronounced in male mice than in female mice, suggesting a sex-specific role of p53 in these behaviors. Using RNA sequencing (RNAseq) to identify p53-associated genes in the hippocampus, we showed that knocking down p53 up- or down-regulates multiple genes with known functions in synaptic plasticity and neurodevelopment. Altogether, our study suggests p53 as an activity-dependent transcription factor that mediates the surface expression of AMPAR, permits hippocampal synaptic plasticity, represses autism-like behavior, and promotes hippocampus-dependent learning and memory.

  

How to upregulate p53?

It is important to note that increasing p53 levels does not guarantee that p53 will be activated.

Researchers are still in the early stages of developing drugs that can specifically activate p53.

There are a number of food products that have been shown to increase p53 levels in cells, such as cruciferous vegetables like broccoli.

If you refer to the excellent Gene Cards resource, you will find that very many drugs can help activate p53. Almost 500 are listed – too many for me to review here.


https://www.genecards.org/cgi-bin/carddisp.pl?gene=TP53

 

One example is the old antihistamine Clemastine that has been recommended in this blog, for completely different reasons. A paper in 2023 suggests “Repurposing Clemastine to Target Glioblastoma (brain cancer)”.

Indole-3-carbinol (I3C) gets listed as does Epigallocatechin gallate (EGCG).

I have mentioned previously that I3C is one reason (unrelated to sulforaphane) that broccoli can be beneficial in some autism.

The last time I mentioned EGCG, a catechin found in green tea, a doctor reader contacted me to tell me that he has taken it for 20 years for its antiangiogenic properties. Antiangiogenic means that something prevents or slows down the growth of new blood vessels. Cancer cells need a blood supply to grow and spread. They produce proteins called angiogenic factors, which stimulate the growth of new blood vessels. Antiangiogenic drugs work by blocking the effects of angiogenic factors or by targeting the cells that produce them. This can starve cancer cells of the blood they need to grow and spread.  It seems to have worked well for our reader!

We have seen that EGCG has been proposed to treat girls with Rett syndrome.

EGCG has been shown to have a number of beneficial effects in cells and animal models of Rett syndrome. For example, EGCG has been shown to: 

·        Increase levels of the p53 tumor suppressor protein

·        Reduce oxidative stress

·        Improve mitochondrial function

·        Promote synaptic plasticity

·        Protect neurons from damage

One of our readers finds that Broccoli powder (Broccomax) provides a boost to his daughter with Rett syndrome. Is it the sulforaphane or it the Indole-3-carbinol (I3C)? My bet would be on the I3C from the broccoli.  You can buy I3C itself.

 

Conclusion

More p53 please!

Eating well is much more than just about vitamins.  Eating all those healthy foods mentioned above that many people avoid will boost your p53 levels.

Ultimately there will be an expensive new drug to boost p53 in cancer patients.

Very many old drugs do have secondary effects that include boosting or activating p53.

Curcumin, not surprisingly, boosts p53 and helps protect people of Indian origin from cancer via their traditional diet.

Genistein, resveratrol, EGCG, broccoli powder are all supplements that boost p53.

It is nice to see that Clemastine, my favorite old antihistamine that may promote myelination in some, stabilize activated microglia in some, many also increase p53 sufficiently to be seen as a potential anti-cancer therapy.

Maybe keep an eye out for Dr Tsai, particularly if you are interested in Fragile X or p53. Here he is: 

https://mcb.illinois.edu/directory/profile/nptsai






Thursday 21 September 2023

Big heads, the Car wash, Transcranial pulse stimulation, GABA alpha 5 and Potassium channel Kv3.1


Today’s post is a review of some interesting new research that relates to the scope of this blog.  It ranges from training young people with autism/ID to work at the car wash, to more complex science.

Let’s start with the easiest paper. Somewhat bizarrely it was carried out in Japan by researchers from India. I am a fan of teaching kids to wash cars but I was surprised to see that it would be covered in a published research study.

One often forgotten item to teach teenagers and young adults with autism or ID is how to safely use public transport, so they might travel independently to and from any future job. We have had a lot of success with this recently. Monty, now aged 20, can get all the way from home to various different locations across the city using public transport, including changing buses and with journey times more than one hour.

 

Increasing car washing competency in adolescents with autism and intellectual disabilities: Researching visual task evaluation

This study looked at how well visual task evaluation helped teenagers with autism and intellectual disabilities become more competent at car washing. For disabled people to promote their independence and employment chances, car washing skills are crucial. The goal of this study was to ascertain whether training techniques that include visual task evaluation can improve car washing proficiency in teenagers with autism and intellectual disabilities. 30 participants, ranging in age from 12 to 18, participated in a pre-test/post-test design. Randomly chosen groups of participants were put into the evaluation group for the visual task or the control group. According to the findings, the visual task evaluation group outperformed the control group in terms of car washing ability. Adolescents with autism and intellectual disabilities can learn skills more quickly and become more independent by including visual task evaluation into their teaching strategies. These results demonstrate the potential for such treatments to enhance their quality of life and employment chances.

 

Car washing with a pressure washer is great fun for most people and washing a car thoroughly has many individual steps to master, so it is good practice.

  

Head size

It has been known for decades that big heads (macrocephaly) and small heads (microcephaly) are a tell-tale sign of a neurodevelopment problem. Normally, big heads are linked to intellectual disability, but very small heads are also a warning sign.

Readers may recall the Zika virus epidemic in Brazil in 2015. This mosquito-borne virus caused pregnant women to give birth to children with microcephaly. Zika virus infection caused intellectual disability in babies. The severity of the intellectual disability varied from mild to severe. Babies with Zika virus infection may have difficulty learning and communicating. They may also have problems with problem-solving and abstract thinking. Hearing and vision can be impaired and growth is retarded.  

Head size parts autism into two major subtypes

Essentially opposite paths in fetal brain development may explain two major subtypes of autism. In one of these subtypes, an unusually high number of excitatory neurons in a key brain region leads to large heads, or macrocephaly, which affects roughly 20 percent of people with autism; in the other, a decreased number of the same cells in that area leads to more typical head sizes, a new study finds. 

This fundamental biological difference suggests that “therapeutic avenues may be drastically different for these subtypes,” says lead investigator Flora Vaccarino, professor of neuroscience at Yale University. “That in turn could explain why drug treatments for autism so far are failing.”

 

The opposite brain development paths found in this research may both lead to autism because they are each a case of imbalance, says investigator Alexej Abyzov, associate professor of biomedical informatics at the Mayo Clinic in Rochester, Minnesota. 

The full paper:- 

Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis

Idiopathic autism spectrum disorder (ASD) is highly heterogeneous, and it remains unclear how convergent biological processes in affected individuals may give rise to symptoms. Here, using cortical organoids and single-cell transcriptomics, we modeled alterations in the forebrain development between boys with idiopathic ASD and their unaffected fathers in 13 families. Transcriptomic changes suggest that ASD pathogenesis in macrocephalic and normocephalic probands involves an opposite disruption of the balance between excitatory neurons of the dorsal cortical plate and other lineages such as early-generated neurons from the putative preplate. The imbalance stemmed from divergent expression of transcription factors driving cell fate during early cortical development. While we did not find genomic variants in probands that explained the observed transcriptomic alterations, a significant overlap between altered transcripts and reported ASD risk genes affected by rare variants suggests a degree of gene convergence between rare forms of ASD and the developmental transcriptome in idiopathic ASD.

 

Head circumference at birth is a useful measurement, but what really matters is how it changes over time.  Hyperactive pro-growth signaling affects more than just brain growth, it also affects muscle development, which is easy to notice.  I have highlighted the graphic below several times in this blog and in my book.  It is a good summary of what is going on.

 


Kv3.1

Regular readers will know that I like ion channels. The reason is that dysfunctions in these channels really should be treatable.  Usually we are looking for channel blockers, but today with Kv3.1 we are looking for channel enhancers.

Ion channel enhancers increase the activity of ion channels without directly opening them. They do this by increasing the number of open channels, increasing the opening time of each channel, or decreasing the closing time of each channel.

  

At the heart of the study is a type of inhibitory neuron called GABAergic interneurons, which connect brain regions, playing vital roles in coordinating high-frequency brain activity. As a potential source of the excitatory/inhibitory imbalance in ASD and schizophrenia, evidence now points to malfunction of a type of potassium channel, Kv3.1, special to GABAergic interneurons. Denton and his team will aim to develop Kv3.1 enhancers and test their efficacy in restoring the balance of neural activity in a mouse model of ASD. In latter stages of this work, they’ll focus on key brain areas, using various lab techniques to carefully fill in neurological details surrounding any targeted drug effects.

“This grant creates opportunities for developing critically needed tool compounds to explore the role of Kv3.1 potassium channels in autism spectrum disorder and schizophrenia,” said Denton, professor of Anesthesiology and Pharmacology. “These are some of the most challenging and costly disorders going, and we’re excited to have this opportunity to take this work forward.”

 

Japanese researchers from the RIKEN Brain Science Institute are also thinking along the lines of targeting Kv3.1 to “correct aberrant developmental trajectories”. 

Kv3.1 channels regulate the rate of critical period plasticity 

The emergent function of fast-spiking PV-cell circuits during postnatal life may hold the key to a deeper understanding of critical periods in brain development (Reh et al., 2020) and the etiology of related mental illnesses as well (Do KQ and Hensch, 2015). The human neocortex notably shows a decrease in Kv3.1b channel protein in schizophrenia, a deficit that is restored by anti-psychotic drugs (Yanagi et al., 2014). Moreover, individuals with a KCNC1 loss-of-function variant can present intellectual disability without seizure and epilepsy (Poirier et al., 2017Park et al., 2019). Our work points toward a prophylactic psychiatry that may target these particular channels to correct aberrant developmental trajectories.

 

As with head size, the “when” is also important with correcting Kv3.1.  The idea is to intervene at a very early age to redirect the developmental trajectory, rather than just to improve today’s functioning.

The logical question is what drugs will Professor Denton come up with to explore the benefit of targeting Kv3.1.  Perhaps someone can beat him to it and save us all a couple of decades?

If you look up Kv3.1 or the gene that encodes it called KCNC1 you can read all about it.

https://www.genecards.org/cgi-bin/carddisp.pl?gene=KCNC1

 

As expected, there is no shortage of channel blockers – Nifedipine (used a calcium channel blocker), Miconazole (an antifungal), Capsaicin (an active component of chili peppers), Fluoxetine (better known as Prozac, which is vitamin P to many people) plus many more.

Professor Denton is hunting for a channel enhancer.  Keep an eye on what he comes up with. He has $2.7 million over 4 years to play with. 

 

Transcranial pulse stimulation

Many autism parents do not like drug therapies, but often like the idea of zapping the brain from outside. I liked the idea of Photo biomodulation (PBMT) a form of light therapy that utilizes light sources including lasers or LEDs.

 

Low Level Laser Therapy (LLLT) for Autism – seems to work in Havana


Home/Clinic based Photobiomodulation/Laser Therapy in Autism - acting on Light Sensitive Ion Channels, Mitochondria, Lymph Nodes and more


 

You could potentially do Low Level Laser Therapy (LLLT) at home.

Professor Manual Casanova is a fan of transcranial magnetic stimulation (TMS).

Today’s paper below is about transcranial pulse stimulation, which I suppose we can just call TPS.

Transcranial pulse stimulation (TPS) is a non-invasive brain stimulation technique that uses pulsed electrical or magnetic fields to stimulate the brain. It is a relatively new technique, but it has the potential to be used for a variety of purposes, including:

  • Treating neurological disorders such as Parkinson's disease, Alzheimer's disease, and depression
  • Enhancing cognitive function, such as memory and attention
  • Improving mood and well-being
  • Reducing pain
  • Promoting neuroplasticity, the ability of the brain to change and adapt

 


 

Effects of transcranial pulse stimulation on autism spectrum disorder: a double-blind, randomized, sham-controlled trial

 

Transcranial pulse stimulation has been proven effective to improve cognition, memory and depressive symptoms of Alzheimer’s disease, but supporting evidence on other neurological diseases or neuropsychiatric disorders remains limited. This study aimed to investigate the effects of transcranial pulse stimulation on the right temporoparietal junction, which is a key node for social cognition for autism spectrum disorder, and to examine the association between transcranial pulse stimulation and executive and social functions. This double-blinded, randomized, sham-controlled trial included 32 participants (27 males), aged 12–17 years with autism spectrum disorder. All eligible participants were randomized into either the verum or sham transcranial pulse stimulation group, on a 1:1 ratio, based on the Childhood Autism Rating Scale screening score. Sixteen participants received six verum transcranial pulse stimulation sessions (energy level: 0.2–0.25 mJ/mm2; pulse frequency: 2.5–4.0 Hz, 800 pulse/session) in 2 weeks on alternate days. The remaining 16 participants received sham transcranial pulse stimulation. The primary outcome measure included Childhood Autism Rating Scale score changes, evaluated by parents, from baseline to 3-month follow-ups. Secondary outcomes included a self-reported questionnaire responded to by parents and cognitive tests responded to by participants. A licensed mental health professional evaluated clinical global impression severity, improvement, efficacy and total score. Results revealed significant interactions in Childhood Autism Rating Scale and other secondary outcomes. Significant group and time effects were found in most secondary outcomes. Additionally, significant differences were found between the transcranial pulse stimulation and sham transcranial pulse stimulation groups in Childhood Autism Rating Scale and clinical global impression improvement and total score immediately after 2 weeks of transcranial pulse stimulation intervention (all P < 0.05), and effects were sustainable at 1- and 3-month follow-up, compared with baseline. The effect size of Childhood Autism Rating Scale (d = 0.83–0.95) and clinical global impression improvement (d = 4.12–4.37) were large to medium immediately after intervention and sustained at 1-month post-stimulation; however, the effects were reduced to small at 3-month post-stimulation (d = 2.31). These findings indicated that transcranial pulse stimulation over right temporoparietal junction was effective to reduce the core symptoms of autism spectrum disorder, as evidenced by a 24% reduction in the total Childhood Autism Rating Scale score in the verum transcranial pulse stimulation group. Additionally, the clinical global impression total score was reduced by 53.7% in the verum transcranial pulse stimulation group at a 3-month follow-up, compared with the baseline. Participants in the verum transcranial pulse stimulation group had shown substantial improvement at 1- and 3-month follow-ups, compared with baseline, although some of the neuropsychological test results were deemed statistically insignificant. Future replication of this study should include a larger sample derived from multi-nations to determine transcranial pulse stimulation as an alternative top-on treatment option in neuropsychiatry

 

TPS looks pretty impressive, based on the above study. TPS is available today, but it does need a lot of visits to the therapist. The effects are not permanent so you would have to keep going back for more.

People are doing transcranial direct current stimulation (tDCS) at home. 

People are zapping their brains at home to improve focus and clear brain fog. But is it safe?


For any kind of zapping therapy to be viable, it would have to be possible to do it yourself at home.

 

Targeting alpha 5 subunit of GABAA receptors

Some earlier posts in this blog did get rather complicated.  One field that I looked at in rather painful detail was the GABAA receptor. Some readers of this blog have children whose autism is entirely caused by a defect in this receptor, many other readers just see the effects of a GABAA malfunction caused by a problem with NKCC1/KCC2 expression resulting from the GABA developmental switch failing to occur.

I looked to me that targeting alpha 3 and alpha 5 subunits could well enhance cognition.

Alpha 3 is targeted by low dose Clonazepam, thanks to Professor Catterall.

Alpha 5 was targeted to treat Down syndrome, using a new drug called Basmisanil (an inverse agonist of alpha 5 subunit of GABAA). That work failed. I wrote about Cardiazol/ Pentylenetetrazol (PTZ) a drug that was widely used in the 1930s in mental hospitals to trigger seizures that were supposed to treat people with schizophrenia.  At much lower doses, it found a new purpose decades ago as an ingredient in cough medicine. 

The alpha 5 subunit is one of several subunits that can make up a GABAA receptor. GABAA receptors containing the alpha 5 subunit are thought to be involved in cognitive function, learning and memory, and mood regulation.

PTZ has been shown to block the action of GABA at alpha 5-containing GABAa receptors in animal studies.  

Variable Expression of GABRA5 and Activation of α5 -  a Modifier of Cognitive Function in Autism?

 

Sodium Benzoate and GABRA5 - Raising Cognitive Function in Autism 

Cardiazol, a failed Schizophrenia treatment from the 1930s, repurposed at low doses as a Cognitive Enhancer in Down Syndrome and likely some Autism

 

The logical human trial would be to use the cough mixture, Cardiazole that is already used in children. 

“We actual have quite a few readers from India and that is the only other country using this drug.  In India the producer is Nicholas Piramal and the brand name is Cardiazol Dicodid, it cost 30 US cents for 10ml.  So for less than $1, or 70 rupees, you might have a few months of cognitive enhancement, that is less than some people pay for 1 minute of ABA therapy.

If a few drops of this children’s cough medicine improves cognition please lets us all know.”

 

Back to recent research on alpha 5 that caught my attention.

 

An alpha 5-GABAa receptor positive allosteric modulator attenuates social and cognitive deficits without changing dopamine system hyperactivity in an animal model for autism

 Autism Spectrum Disorders (ASD) are characterized by core behavioral symptoms in the domains of sociability, language/communication, and repetitive or stereotyped behaviors. Deficits in the prefrontal and hippocampal excitatory/inhibitory balance due to a functional loss of GABAergic interneurons are proposed to underlie these symptoms. Increasing the postsynaptic effects of GABA with compounds that selectively modulate GABAergic receptors could be a potential target for treating ASD symptoms. In addition, deficits in GABAergic interneurons have been linked to dopamine (DA) system dysregulation, and, despite conflicting evidence, abnormalities in the DA system activity may underly some ASD symptoms. Here, we investigated whether the positive allosteric modulator of α5-containing GABAA receptors (α5-GABAARs) SH-053-2’F-R-CH3 (10 mg/kg) attenuates behavioral abnormalities in a rat model for autism based on in utero VPA exposure. We also evaluated if animals exposed to VPA in utero present changes in the ventral tegmental area (VTA) DA system activity using in vivo electrophysiology and if SH-053-2’F-R-CH3 could attenuate these changes. In utero VPA exposure caused male and female rats to present increased repetitive behavior (self-grooming) in early adolescence and deficits in social interaction in adulthood. Male, but not female VPA rats, also presented deficits in recognition memory as adults. SH-053-2’F-R-CH3 attenuated the impairments in sociability and cognitive function in male VPA-exposed rats without attenuating the decreased social interaction in females. Male and female adult VPA-exposed rats also showed an increased VTA DA neuron population activity, which was not changed by SH-053-2’F-R-CH3. Despite sex differences, our findings indicate α5-GABAARs positive allosteric modulators may effectively attenuate some core ASD symptoms

 

Fine tuning alpha 5, perhaps you need more, perhaps less?

 

Neurobiology and Therapeutic Potential of α5-GABA Type A Receptors

Despite being a genetically heterogeneous disorder, the potential utility for mechanism-based GABAAR pharmacologic treatment with ASDs is supported by shared pathologies both in patients and related mouse models.


  

PAM α5 GABAAR Therapeutic Applications

Neurodevelopmental Disorders

Mouse models of neurodevelopmental disorders that present with insufficient inhibitory tone show improvement with positive modulators of GABAAR signaling. In the Scn1a+/− mouse model of Dravet syndrome, a severe childhood epileptic encephalopathy syndrome with hyperactivity and autism behaviors, abnormal social behaviors and fear memory deficits were rescued following treatment with a benzodiazepine, clonazepam (Han et al., 2014). In an ASD mouse model with reduced GABAAR-mediated inhibition, the BTBR T+tf/J mouse, the α2,3 and 5 PAM L-838,417, improved deficits in social interaction, repetitive behaviors, and spatial learning (Han et al., 2014).

 

Postweaning positive modulation of α5GABAA receptors improves autism‐like features in prenatal valproate rat model in a sex‐specific manner 

Autism spectrum disorder (ASD), as a common neurodevelopmental disorder that encompasses impairments in social communication and interaction, as well as repetitive and restrictive behavior, still awaits an effective treatment strategy. The involvement of GABAergic neurotransmission, and especially a deficit of GABA A receptors that contain the α5 subunits, were implicated in pathogenesis of ASD. Therefore, we tested MP‐III‐022, a positive allosteric modulator (PAM) selective for α5GABAA receptors, in Wistar rats prenatally exposed to valproic acid, as an animal model useful for studying ASD. Postweaning rats of both sexes were treated for 7 days with vehicle or MP‐III‐022 at two doses pharmacokinetically determined as selective, and thereafter tested in a behavioral battery (social interaction test, elevated plus maze, spontaneous locomotor activity, and standard and reverse Morris water maze). Additional rats were used for establishing a primary neuronal culture and performing calcium imaging, and determination of hippocampal mRNA levels of GABRA5, NKCC1, and KCC2. MP‐III‐022 prevented impairments in many parameters connected with social, repetitive and restrictive behavioral domains. The lower and higher dose was more effective in males and females, respectively. Intriguingly, MP‐III‐022 elicited certain changes in control animals similar to those manifested in valproate animals themselves. Behavioral results were mirrored in GABA switch and spontaneous neuronal activity, assessed with calcium imaging, and also in expression changes of three genes analyzed. Our data support a role of α5GABAA receptors in pathophysiology of ASD, and suggest a potential application of selective PAMs in its treatment, that needs to be researched in a sex‐specific manner. Lay Summary In rats prenatally exposed to valproate as a model of autism, a modulator of α5GABAA receptors ameliorated social, repetitive and restrictive impairments, and, intriguingly, elicited certain autism‐like changes in control rats. Behavioral results were mirrored in GABA switch and spontaneous neuronal activity, and partly in gene expression changes. This shows a role of α5GABAA receptors in pathophysiology of ASD, and a potential application of their selective modulators in its treatment.

 

Note the researchers actually know about the GABA switch and so measured mRNA levels of NKCC1 and KCC2.

Note also that the lower dose of MP‐III‐022 was more effective in males and the higher dose in females.

We even have the recent associated PhD thesis from Anja Santrač:-

 

The influence of positive modulation of GABAA receptors containing the alpha5 subunit on behavioral changes of mice and rats in models of autistic disorders

The role of α5 GABAA receptors in learning and memory is well known. Therefore, we decided to examine the effect of the selective positive allosteric modulator (PAM) MP-III-022 on learning and memory of healthy animals, as well as GABRA5 expression. After demonstrating the needed tolerability and potential procognitive effects, the ligand would be used in an animal model of autism spectrum disorders (ASD). ASD is a neurodevelopmental disorder that encompasses impairments in social communication and interaction, as well as repetitive and restrictive behavior, still without an effective treatment. In this context, animal models that imitate specific disease’s symptoms are an excellent tool of translational research. Some of the most frequently used models are BTBR T+ tf/J mouse strain (BTBR) and valproate prenatal model (VPA). Our experiments have shown that the variability of α5GABAA receptors’ roles depends on its level of expression and localization, on the type and protocol of cognitive tasks, the timing of testing and intensity of pharmacological modulation. Obtained results proved potential beneficial effects of MP-III-022 in cognitive tasks. The BTBR model failed to express sufficient face validity, while VPA demonstrated adequate face validity and in part construct validity. Thus, we decided to subacutely apply MP-III-022 to juvenile VPA rats. In control animals, treatment led to GABRA5 decrease and to impairments similar to ones seen in ASD, suggesting the possible role of this receptor in the pathogenesis of the disease. Most importantly, our results demonstrated the potential of α5 GABAA receptor PAMs in secondary prevention and treatment of ASD, with the caveat that the drug development program would require adaptations tailored to sex-specific differences revealed.

 

Good job Anja. For our Serbian speaking readers, here is the link to her thesis:-

https://nardus.mpn.gov.rs/bitstream/handle/123456789/21424/Disertacija_13513.pdf?sequence=1&isAllowed=y

Perhaps we should connect her with Professor Ben-Ari?

  

Conclusion

Fine tuning alpha 5 subunits of GABAA receptors really should be followed up.  I think you need both options - a little bit more and a little bit less. It did not work for Roche in Down syndrome, but the potential remains.

Kv3.1 is another focused target for research, that very likely will become actionable. 

Transcranial pulse stimulation, like all the other zapping therapies, looks interesting, but it needs to be packaged in way that can actually be implemented every day at home.

In the meantime, at least getting your kid to wash the car is something we can all do.