UA-45667900-1
Showing posts with label GH. Show all posts
Showing posts with label GH. Show all posts

Thursday 5 December 2013

Autism Phenotypes

Hardly a week goes by without somebody mentioning to me a wonder treatment or even “cure” for autism; the latest one being the GAPS diet.

I think all such reports are worthy of investigation, but many lead to nowhere.

Why is this?




  
·       Medical science has failed to adequately define autism, so we are not all talking about the same autism

·        Many people putting forward theories have not read even the most basic (and not contested) autism research.  Some are even, apparently, qualified “doctors”.
 
Autism Phenotypes

What is not disputed is that autism has many sub-types (phenotypes). Researchers tell us 10-20% of cases referred to as autism have a known genetic defect (Fragile X, SLOS, Timothy syndrome etc.).  80% do not have a known genetic marker/cause.

Autism can be subdivided into regressive (when a child loses speech and other learnt skills) and non-regressive (early onset).  Even this can be a subjective judgment, since it effectively relies on parents to determine it, after the event.
Then you have cases of autism which clearly have nothing to do with Kanner’s classic version.  In this blog I showed how even cerebral malaria in a child can lead to the onset of autism.  This clearly is a case of brain damage caused by malaria; but to the observer, months later, it would probably be classed as regressive autism or childhood disintegrative disorder.
 
Testing for Autism
Researchers and doctors keep repeating that there is no test for autism.  This is not strictly true, but it does explain why so many different conditions are all lumped together as “autism”.

In fact, if you read the research closely, you will see that there are many tests for autism; although they may not be perfect.
The only way to know for sure that it is genuine autism is to examine the brain itself.  The only way to do this 100% accurately is via post-mortem analysis of the brain.  Recently, non-invasive methods have been developed to confirm the same findings of brain malformation that occurred prior to birth.

So the kind of autism that relates to tissue held in brain banks is best understood.  But what kind of autism would that be?  Well, it refers mainly to children and young adults who died prematurely.  They died from things like seizures or drowning.  What does that tell us?  This tells us that these people were most likely severely affected by autism.  The mild, social difficulties, type of autism is, fortunately, hardly likely to make it to the brain tissue bank.
If the person interpreting the MRI of a child’s brain knows what to look for, they may very well be able to identify this type of autism.  The expert here is Eric Courchesne.
A similar approach can followed using Electroencephalography (EEG) to identify autism; but it would be smart to cross check this with Eric.

Regressive vs. Early-Onset
Then you have the difference between regressive and non-regressive autism.  Here again, from my Dean’s List of researchers, we look at Paul Ashwood’s research to see that kids with regressive autism have HIGHER levels of inflammatory markers in their blood.  These include cytokines like interleukin 6, which can be inexpensively measured in most laboratories.  This tells us that perhaps regressive autism is an entirely different condition from non-regressive/early onset autism.  As I would expect, increasing cytokine levels were associated with more impaired communication and aberrant behaviors. 
 
Lab Testing
We have seen earlier in this blog that some very expensive lab tests exist for autism, but their usefulness and integrity is highly disputed.  There are, of course, many hundreds of other tests that are entirely validated by medical science.  Many of these tests are cheap and available all over the world.

Hormonal Screening
We know from the research that about 30% of people with autism have high blood serotonin. A standard lab test is required.
We know that many have high levels of insulin-like growth factor (IGF-1).  A standard lab test is required.
Thyroid hormone levels and in particular a blunted response of TSH to TRH (i.e. central hypothyroidism) can help define further phenotypes.

The TRH test is now not widely used, but TSH, FT3 and FT4 are cheap tests.
Growth Hormone (GH) is also implicated in autism, along with IGF-1; there is a lab test to measure pituitaryfunction to see how well GH is being produced.

By screening for hormonal dysfunction, it would be possible to identify phenotypes that would most likely benefit from therapies targeting those defects, like NNZ-25266.

Pancreatic Dysfunction
It is reported by Joan Fallon, of Curemark, that 50+% of kids diagnosed with “US autism” seem to have a pancreatic dysfunction.  This can be tested for by measuring fecal chymotrypsin level.  The test measures how well your pancreas is working, and is a standard test for people with cystic fibrosis.  Since the US diagnoses far more kids with autism than other countries, it seems highly plausible that “US autism” includes many more phenotypes than, say, “French autism”.

I was quoted about $8 for a chymotrypsin test.

Ion-Channel Diseases (Channelopathies)
Many diseases like Parkinson’s disease, Spinocerebellar Ataxia and Timothy Syndrome are caused by faulty calcium ion-channels.

The Bumetanide autism therapy, undergoing trials in Europe, is based on another channelopathy, this time a faulty chloride transporter NKCC1.
It is clear from reports I have received, that Bumetanide therapy is totally ineffective in some children with ASD, but in other children, like my son, it is effective.
So some types of autism have certain channelopathies and other types have different ones or, quite possibly, none at all.  


Conclusion
My conclusion today is pure conjecture.  I imagine that possibly as few as a quarter of cases of “US autism” are actually “real” autism, that is with all the brain damage/malformation that is identified in those post mortem brain studies and which forms the basis of 90% of autism research.

The other three quarters may be something entirely different, just like the case of the mosquito that bit the child, produced cerebral malaria and then later the full symptoms of autism.  Within the three quarters may be food allergies, digestive enzyme deficiencies, gut disorders, mastocytosis, blood brain barrier defects, undefined calcium ion-channel diseases etc.
This would account for those occasional amazing “recoveries” and the apparent success, in some cases, of diets like GAPS.  Sadly, diet is unlikely to 100% fix brain damage.  If you are lucky enough to totally “recover”, you cannot have had brain damage in the first place.  It is evident that in some phenotypes of autism, diet can reduce autistic behaviours.  This can only be proved in trials, if biomarkers are established for that specific phenotype.
Most likely the only biological thing all these “autisms” have in common is oxidative stress and neuroinflammation; but only a non-medical scientist, like me, can say such a thing.

 

 

Thursday 14 November 2013

Clonidine, ADHD and Autism


Clonidine has been used for more than half a century as an antihypertensive drug, to lower blood pressure.

It later found favour as a treatment for ADHD, drug withdrawal treatment, tobacco withdrawal treatment and a wide range of psychiatric disorders.  Off label usage of Clonidine includes autism.

Until recently it appeared to researchers to be a centrally acting α2 adrenergic agonist, but recent research indicates than instead it is a centrally as an imidazoline receptor agonist.  This would account for its actions other than lowering blood pressure. Maybe it is both.  The good thing is that it is centrally acting (i.e. acting on the brain and the CNS) and it does appear to work. 

Adrenergic Agonist
As a centrally-acting α-adrenergic receptor agonist, Clonidine has more affinity for α2 than α1. It selectively stimulates receptors in the brain that monitor catecholamine (epinephrine, norepinephrine and dopamine) levels in the blood. These receptors close a negative feedback loop that begins with descending sympathetic nerves from the brain that controls the production of catecholamines.  By fooling the brain into believing that catecholamine levels are higher than they really are, clonidine causes the brain to reduce its signals to the adrenal medulla, which in turn lowers catecholamine production and blood levels. The result is a lowered heart rate and blood pressure.

Imidazoline Receptors
There are three classes of imidazoline receptors:
  • I1 receptor – mediates the sympatho-inhibitory actions of imidazolines to lower blood pressure
  • I2 receptor – an allosteric binding site of monoamine oxidase and is involved in pain modulation and neuroprotection.
  • I3 receptor – regulates insulin secretion from pancreatic beta cells

L-Monoamine oxidases (MAO)
MAOs are enzymes that act as catalysts.  There are two types of MAO: MAO-A and MAO-B
MAO- A is an enzyme that degrades amine neurotransmitters such as dopamine (DA), norepinephrine (NE), and serotonin (5-HT).

MAO-B is an enzyme that catalyzes the oxidation of arylalkylamine neurotransmitters, including dopamine (DA).
The differences between the selectivity of the two enzymes are utilized clinically.  MAO- A inhibitors have been used in the treatment of depression, and MAO-B inhibitors are used in the treatment of Parkinson's disease

Selective MAO-B inhibitors preferentially inhibit MAO-B, which mostly metabolizes DA. If MAO-B is inhibited, then more DA is available for proper neuronal function, especially in Parkinson's Disease. 

Clinical significance
Because of the vital role that MAOs play in the inactivation of neurotransmitters, MAO dysfunction (too much or too little MAO activity) is thought to be responsible for a number of psychiatric and neurological disorders. For example, unusually high or low levels of MAOs in the body have been associated with schizophrenia, depression, attention deficit disorder, substance abuse, migraines, and irregular sexual maturation.
MAO inhibitors are one of the major classes of drug prescribed for the treatment of depression, although they are often last-line treatment due to risk of the drug's interaction with diet or other drugs. Excessive levels epinephrine, norepinephrine or dopamine may lead to a hypertensive crisis, and excessive levels of serotonin may lead to serotonin syndrome.
MAO-A inhibitors act as antidepressant and antianxiety agents, whereas MAO-B inhibitors are used to treat Alzheimer’s and Parkinson’s diseases.

Clonidine in ADHD
In the US, the FDA has licensed clonidine for use in children with ADHD.
Pediatric doses of clonidine are calculated based on the child's body weight. Clonidine dosage for ADHD in children is 5 micrograms per kilogram of body weight per day orally in four divided doses. Children who require a daily dosage of 0.2 mg usually can use the 0.3 mg trans-dermal patch. If ADHD is associated with sleep disturbances, low to moderate doses of clonidine can be taken at bedtime.

Clonidine in Autism
Not surprisingly, since clonidine is effective in ADHD, it also shows promise in autism. 

Other ADHD drugs, like Ritalin, have problematic side effects.  The US Center for Disease Control reported in 2012 that an estimated 6.4 million children ages 4 to 17 had been diagnosed with ADHD at some point, a 53 percent increase over the past decade. Approximately two-thirds of those currently diagnosed have been prescribed drugs such as Ritalin or Adderall. Those drugs can help patients with both mild and severe symptoms, but they can also cause addiction, anxiety and psychosis.  In the UK, it is suggested that about 3% of children may have ADHD.  Drug use is far lower than in the US, but 657,000 prescriptions were written by doctors for drugs like Ritalin in 2012.
There have been studies of clonidine in autism; here a fairly recent one:-
Perhaps even more interesting is a lively debate among parents who have tried it:-
It does seem to work, but nobody seems to be following it up.


Clonidine Stimulation Test
Regular readers will know my interest in TRH and GH.  At least there is no doubt about Clonidine’s effect on GH (growth hormone).  If you want to test pituitary function to see how well GH is being produced, the standard test is the:-
For those interested in GH, if you were to take Clonidine, smoke a cigarette and then have your GH measured, the Endocrinologist would have a surprise.

“These findings suggest that in man nicotinic cholinergic and adrenergic mechanisms might interact in the stimulation of GH secretion.”
 



Interestingly, one of the milder side effects of the ADHD drug Ritalin is growth retardation. According to Professor Tim Kendal, who created the national guidelines in the UK for treating ADHD: - “In children, without doubt, if you take Ritalin for a year, it's likely to reduce your growth by about three-quarters of an inch.


Conclusion
Clonidine looks like another old drug that has been stumbled upon by somebody doing some off label experimentation.  It does seem to have good results in ADHD and Autism.  The good thing is that it is FDA approved and is available in both oral and time release transdermal forms.
I do not think anybody really understands how it works in ADHD or other psychiatric disorders; undoubtedly, there is another, as yet unidentified, mode of action.
 
For those who want more info:- 




Note ulcerative colitis, ADD and even growth delay.

 
 
 

 

Monday 11 November 2013

Creatine, the Sub-types of Autism is Affects, and the Missing $26 million



Poly Genetic Theory of Autism

Autism appears to be the result of the expression of multiple abnormal genes acting in concert, likely initiated by some external factor(s).  This would explain why there are so many variants of autism and why there can seem to be autistic-like traits in close relatives.
 

 

Gene-based Autism Research
Several candidate genes have been identified, such as those linked to fragile X syndrome, tuberous sclerosis etc.  Researchers then follow the science from the target gene to identify a possible therapy.  At this point the researchers then seem to lose their scientific logic; they then try and apply their new therapy to all kinds of autism, i.e. the ones without the “faulty gene”.

This really goes back to our current limited understanding of the brain, medicine is more art than science, and we should perhaps suspend logic and accept this trial and error approach as valid.  At least call it trial and error.

Creatine
Creatine is an organic acid produced naturally in the body.  It helps to supply energy to all cells in the body. This is achieved by increasing the formation of adenosine triphosphate (ATP).

Creatine is not an essential nutrient, as it is manufactured in the human body from L-arginine, glycine and L-methionine.
Its main use as a supplement/drug is among people wanting to develop their muscles, like athletes and bodybuilders.  Taking the standard dose of 5-10 mg has the same effect as eating a very high protein diet.  In people with muscle wasting diseases, Creatine is also used.  What I found interesting was the research showing an effect in depression.  There are marked similarities between conditions like depression and ASD.
We will return later in the post to another reason that Creatine may be relevant to autism; it appears to be something the research community did not notice.  Now back to those professional researchers:-
 
Creatine Deficiency
Science has identified three types of Creatine deficiency and all three lead to mental retardation and/or autism.  Two types are very rare, but are treatable; the third type is far more common, affecting about a million people worldwide, and is currently untreatable in humans.  In mice, this third type has been “cured”, but the money is not yet available to develop and test a human version of the therapy.
 
 
1.      AGAT 
AGAT (L-Arginine:glycine amidinotransferase) is an enzyme.  This enzyme is needed for the body to produce Creatine.  AGAT deficiency will cause Creatine deficiency  and lead to mental retardation and autism.
For those regularly following my blog, please note the following: It has been suggested that AGAT activity in tissues is regulated in a number of ways including induction by growth hormone (GH) and thyroxine (T4).

The actual genetic mutation associated with AGAT involves a tryptophan codon being converted to a stop codon at residue 149.
You may recall in my post on serotonin, we learnt about its precursor tryptophan and how it appears to be degraded in the autistic brain.


2.     GAMT
GAMT (Guanidinoacetate N-methyltransferase) is another enzyme required to produce Creatine.  As with AGAT deficiency, if you are deficient in GAMT, autism and mental retardation will follow.

Treatment
If diagnosed, defects of Creatine biosynthesis are treated with Creatine supplements and, in GAMT deficiency, with ornithine and dietary restriction of arginine through limitation of protein intake.
 
3.     X-linked Creatine deficiency
The final type of Creatine deficiency is much more common, but is much more difficult to treat.  The defect is the Creatine transporter that should allow the Creatine into brain cells, where it plays a critical role in the brain’s energy needs.  No matter how much Creatine you give to people with this disorder, they cannot use it, because their Creatine transporters (CRTs) are defective.

Fortunately, thanks to Dr Joseph Clark, Professor of Neurology at the University of Cincinnati, there is light at the end of the tunnel.  Dr Clark has been researching the Creatine metabolism for some years.  Very unusually, he has been sharing his experiences with us, via his blog.
To cut a long story short, the good doctor has figured out that by using an analog (a modified version) of Creatine called cyclocreatine he could normalize the function of mice with  X-linked Creatine deficiency.  All he now has to do, is to make it work in humans, fully test it and get it FDA approved.  The problem is there is no more money.  In his blog post he tells us that all he needs is:-
$26 million and three more years

Here is the official report from the University:- 
 
Peter’s thoughts on Creatine
I started looking at Creatine because it appears to stimulate IGF-1 (insulin-like growth factor 1).  This is not a fact well-known to endocrinologists, but it is very well known to athletes and body builders.  They take Creatine orally and it stimulates muscle growth.  Research has even measured the change in IGF-1 in muscle tissue resulting from Creatine supplementation.

In a recent post I pointed out that IGF-1 is itself being used in autism trials, as is a novel Australian analog of IGF-1 [1-3] called NNZ-2566.  The big advantage of NNZ-2566 is that it is taken orally.

The release of IGF-1 is stimulated by growth hormone GH.  Secretion of growth hormone (GH) in the pituitary is regulated by the hypothalamus, which release the peptides Growth hormone-releasing hormone (GHRH) and Growth hormone-inhibiting hormone (GHIH) into the blood surrounding the pituitary. GH release in the pituitary is primarily determined by the balance of these two peptides, which in turn is affected by many physiological stimulators (e.g., exercise, nutrition, sleep) and inhibitors (e.g., free fatty acids) of GH secretion.
Stimulators of growth hormone (GH) secretion include:
  • peptide hormones
    • GHRH  through binding to the growth hormone-releasing hormone receptor
    • ghrelin through binding to growth hormone secretagogue receptors
  • sex hormones
    • increased androgen secretion during puberty (in males from testis and in females from adrenal cortex)
    • estrogen
  • clonidine and L-DOPA by stimulating GHRH release

·         α4β2 nicotinic agonists, including nicotine, which also act synergistically with clonidine 
      (Interestingly clonidine is a drug used for ADHD, or autism-lite, as I call it)

Factors that are known to cause variation in the levels of (GH) and IGF-1 in the circulation include: genetic make-up, the time of day, age, sex, exercise status, stress levels, nutrition level and body mass index (BMI), disease state, race, estrogen status and xenobiotic intake. The later inclusion of xenobiotic intake as a factor influencing GH-IGF status highlights the fact that the GH-IGF axis is a potential target for certain endocrine disrupting chemicals. These are chemicals found in both household and industrial products that are known to interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body that are responsible for development, behavior, fertility, and maintenance of normal cell metabolism. 
Based on my earlier primary research, I am pretty sure that in the sub-type of autism I am dealing with, there is a deficiency of either GH or TRH, in the brain.  As I result, I am interested in mention of these hormones.


 SHANK3 deficiency
(also known as 22q13 Deletion Syndrome or Phelan-McDermid Syndrome)

IGF-1 is being trialled at Mount Sinai Hospital in New York in autistic children with SHANK3 deficiency.  In true “art” rather than “science” approach, the plan is then to trial IGF-1 on children without SHANK3 deficiency.

Here is a good explanation.
If you live in the Big Apple:-

Where Can I Get Testing?


The Icahn School of Medicine at Mount Sinai offers genetic testing for Phelan-McDermid Syndrome/22q13 Deletion Syndrome and for SHANK3 mutations. A blood sample is needed to conduct the test. For more information about testing, visit The Seaver Autism Center, call (212) 241-0961  

It appears that SHANK3 deficiency accounts for about 1% of autism cases.
If, as is hoped, IGF-1 turns out to be a useful therapy in SHANK3 deficient children, it will be tried on all ASD kids.  If it works, then what was the relevance of SHANK3 in the first place?   It seems pretty odd to me.  I think most likely our current understanding of genetics is so basic, as to be flawed.

I am working via observation, rather than genetics; I know what circumstances produce near neurotypical behaviour, I just need to understand what is going on biologically.  This is how I ended up with TRH and/or GH.


Conclusion
Well if the Mount Sinai study is successful, as it probably will be, we should find Dr Clark in Cincinnati and give him $26 million.  Then we put creatine and cyclocreatine in a pill and give it to ALL people with ASD, since 99% will never get their sub-type diagnosed. 

Either the creatine, the cyclocreatine or the extra IGF-1 will do some good, depending on the sub-type – something for everyone. And no needles.