UA-45667900-1
Showing posts with label NMDAR. Show all posts
Showing posts with label NMDAR. Show all posts

Saturday 1 August 2015

NMDAR hypo-function causing E/I imbalance in Autism and Schizophrenia – Baclofen, Sodium benzoate and Cinnamon (again)


Click on figure to enlarge

Interpretation, extrapolation and graphic - Peter  


Today’s post is not the one I intended.

It nearly got tucked into long complicated one, that most people might not read.

I should caution that I am perhaps over-simplifying something that is extremely complicated, but no one fully understands the subject.

There is much talk in autism about the imbalance between excitatory and inhibitory processes. In this blog this is normally all about the inhibitory neurotransmitter, GABA, not functioning properly.

There is of course another side to the story.  The excitatory neurotransmitter Glutamate signals via receptors including the NMDA receptors.  If signaling via these receptors is either up or downregulated, the delicate balance between excitatory and inhibitory can again be lost.

What caught my interest was an experiment on mice that caused downregulation of (excitatory) NMDA signaling. This caused the famous E/I imbalance and resulting autistic behavior.

The interesting part is that the researchers normalized the imbalance and the autism not by targeting NMDA but by targeting GABA.  They used baclofen that acts on GABAB receptors.  So they made the mouse autistic by adjusting NMDA (Glutamate) signaling, but recovered the mouse by adjusting the GABA signaling.  This is really quite compelling and made me look into the E/I imbalance again.

It also neatly explains why anti-epileptics, like valproate, when given during pregnancy can result in autistic off spring.  The Valproate increases GABA signaling, i.e. it inhibits neurons from firing too easily.  This reduced the tendency towards seizures.  It will unfortunately also enter the blood stream of the unborn child.  Here again it will shift the E/I balance towards inhibitory, but unlike in the mother, the E/I balance in the child was perfectly fine.  The valproate shifts the E/I balance out of the “safe zone” into the inhibitory danger zone.  This then can affects critical processes in the developing brain leading to autism.
   


NMDA hyper/hypo function

In earlier posts we have already seen that in autism NMDA activity be hyper (too much), hypo (too little) or normal.  There are drugs that can increase NMDA activity and others that reduce it.

In this post the research shows that reduced NMDAR signaling has been associated with schizophrenia, (some) autism and intellectual disability. 

A person with autism might be in this group, but as we saw in earlier posts on NMDA they might be in the opposite group and so have excessive NMDAR signaling.  A bit of trial and error would reveal whether the person was hyper, hypo or just right.  All three are possible in autism.   


GABA/Glutamate imbalance in Autism

The neurotransmitter GABA is supposed to be inhibitory and it is kept in balance by the excitatory neurotransmitter Glutamate. Glutamate binds to NMDA receptors and AMPA receptors.  GABA binds to GABAA and GABAB receptors.

In 2003 John Rubenstein and Michael Merzenich published a paper suggesting that autism might be the result of an E/I imbalance that disrupted both the development of the brain at critical periods and also was the underlying cause of some on-going autistic symptoms, including epilepsy (found in 30% of “old” autism) and what I refer to as pre-epilepsy (odd epileptiform activity without seizures – another 40% of “old” autism).  Plenty of subsequent research has supported their hypothesis.


Once well-established theory for the development of autism is that the balance of various neurotransmitters is out of balance.  GABA, the key inhibitory neurotransmitter in the brain, ceases to inhibit the firing of neurons as it should.  The result is chaos in the brain.

In this blog we have concentrated one cause of this so called E/I (excitatory/Inhibitory) imbalance.  That cause is the presence of the NKCC1 transporter in the brain beyond the first few weeks of life.  This transporter leads to an excess of chloride inside the cells and this shifts GABA away from inhibitory to excitatory.  This then results in a GABA/Glutamate imbalance.  This impairs cognitive function and logically may be a cause of some seizures.

As Rubenstein and Merzenich observed, the hypothesis of E/I imbalance gives hope that drugs correcting this balance may treat autism. This has already been proved to be the case.

But there are other possible causes of E/I imbalance.  Today’s post is about one of those.  People who respond to the prescription drug Baclofen and the experimental drug Arbaclofen most likely are affected by this kind of E/I imbalance.

This blog has extensively covered the GABAA-related cause of E/I imbalance, for which the prescription drug Bumetanide is effective.

Baclofen affects the GABAB receptor.  One reader of this blog did tell us that in her patients with Asperger’s and anxiety did respond well to Baclofen.  They quite possibly have an E/I imbalance of the type covered in this post.  If so the underlying cause may well be NMDAR-hypofunction.

Reduced NMDAR signaling has been associated with schizophrenia, autism and intellectual disability.  By definition people with Asperger’s do not have and intellectual disability, but the Reduced NMDAR signaling may still be holding back their ever higher potential cognitive function.

As we will see, there may be a simple way to treat the NMDAR-hypofunction.

We have already covered this in an earlier post, when I talked about sodium benzoate and schizophrenia.

Sodium benzoate has multiple effects.

Sodium benzoate is a D-amino acid oxidase inhibitor. It will raise the levels of D-amino acids by blocking their metabolism and in doing so enhance NMDA function.  In doing so the E/I balance is shifted towards excitatory.


Sodium benzoate also increases the expression of a protein called DJ-1.  This is well known gene/protein because of its role in Parkinson’s disease.  The DJ-1 protein plays a supporting role to a key anti-oxidative stress defense called Nrf-1.

At times of oxidative stress, the body activated Nrf-1 which in then turns on key genes that need to respond to the stress.  In the absence of enough DJ-1, Nrf-1 is unable to sound the alarm and turn on those genes.

Sodium Benzoate is a common food additive (people with histamine intolerance “should be” allergic to it) but it is also a byproduct of eating cinnamon.  This is why cinnamon was shown to have therapeutic value in Parkinson’s disease.  Rather surprising it has also been shown to be beneficial in early Alzheimer’s disease.

In the earlier post we also saw that cinnamon had other useful effects like lowing cholesterol and improving insulin sensitivity.

We saw in the earlier post that it is important to use the “purer” cinnamon that come from Sri Lanka, since the related species from China that is commonly used by bakers does actually have side effects in large doses.

The Sri Lankan cinnamon may cost a bit more, but a one year supply is only about $15.






            Abstract

Reduced N-methyl-D-aspartate-receptor (NMDAR) signaling has been associated with schizophrenia, autism and intellectual disability. NMDAR-hypofunction is thought to contribute to social, cognitive and gamma (30–80 Hz) oscillatory abnormalities, phenotypes common to these disorders. However, circuit-level mechanisms underlying such deficits remain unclear. This study investigated the relationship between gamma synchrony, excitatory–inhibitory (E/I) signaling, and behavioral phenotypes in NMDA-NR1neo−/− mice, which have constitutively reduced expression of the obligate NR1 subunit to model disrupted developmental NMDAR function. Constitutive NMDAR-hypofunction caused a loss of E/I balance, with an increase in intrinsic pyramidal cell excitability and a selective disruption of parvalbumin-expressing interneurons. Disrupted E/I coupling was associated with deficits in auditory-evoked gamma signal-to-noise ratio (SNR). Gamma-band abnormalities predicted deficits in spatial working memory and social preference, linking cellular changes in E/I signaling to target behaviors. The GABAB-receptor agonist baclofen improved E/I balance, gamma-SNR and broadly reversed behavioral deficits. These data demonstrate a clinically relevant, highly translatable neural-activity-based biomarker for preclinical screening and therapeutic development across a broad range of disorders that share common endophenotypes and disrupted NMDA-receptor signaling.





IMPORTANCE In addition to dopaminergic hyperactivity, hypofunction of the N-methyl-D-aspartate receptor (NMDAR) has an important role in the pathophysiology of schizophrenia. Enhancing NMDAR-mediated neurotransmission is considered a novel treatment approach. To date, several trials on adjuvant NMDA-enhancing agents have revealed beneficial, but limited, efficacy for positive and negative symptoms and cognition.
Another method to enhance NMDA function is to raise the levels of D-amino acids by blocking their metabolism. Sodium benzoate is a D-amino acid oxidase inhibitor.

OBJECTIVE To examine the clinical and cognitive efficacy and safety of add-on treatment of sodium benzoate for schizophrenia.

DESIGN, SETTING, AND PARTICIPANTS A randomized, double-blind, placebo-controlled trial in 2 major medical centers in Taiwan composed of 52 patients with chronic schizophrenia who had been stabilized with antipsychotic medications for 3 months or longer.

INTERVENTIONS Six weeks of add-on treatment of 1 g/d of sodium benzoate or placebo.

MAIN OUTCOMES AND MEASURES The primary outcome measure was the Positive and Negative Syndrome Scale (PANSS) total score. Clinical efficacy and adverse effects were assessed biweekly. Cognitive functions were measured before and after the add-on treatment.

RESULTS Benzoate produced a 21% improvement in PANSS total score and large effect sizes
(range, 1.16-1.69) in the PANSS total and subscales, Scales for the Assessment of Negative Symptoms–20 items, Global Assessment of Function, Quality of Life Scale and Clinical Global Impression and improvement in the neurocognition subtests as recommended by the National Institute of Mental Health’s Measurement and Treatment Research to Improve Cognition in Schizophrenia initiative, including the domains of processing speed and visual learning. Benzoate was well tolerated without significant adverse effects.

CONCLUSIONS AND RELEVANCE Benzoate adjunctive therapy significantly improved a variety of symptom domains and neurocognition in patients with chronic schizophrenia. The preliminary results show promise for D-amino acid oxidase inhibition as a novel approach for new drug development for schizophrenia.



Abstract 
This study underlines the importance of cinnamon, a widely-used food spice and flavoring material, and its metabolite sodium benzoate (NaB), a widely-used food preservative and a FDA-approved drug against urea cycle disorders in humans, in increasing the levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] in the CNS. NaB, but not sodium formate (NaFO), dose-dependently induced the expression of BDNF and NT-3 in primary human neurons and astrocytes. Interestingly, oral administration of ground cinnamon increased the level of NaB in serum and brain and upregulated the levels of these neurotrophic factors in vivo in mouse CNS. Accordingly, oral feeding of NaB, but not NaFO, also increased the level of these neurotrophic factors in vivo in the CNS of mice. NaB induced the activation of protein kinase A (PKA), but not protein kinase C (PKC), and H-89, an inhibitor of PKA, abrogated NaB-induced increase in neurotrophic factors. Furthermore, activation of cAMP response element binding (CREB) protein, but not NF-κB, by NaB, abrogation of NaB-induced expression of neurotrophic factors by siRNA knockdown of CREB and the recruitment of CREB and CREB-binding protein to the BDNF promoter by NaB suggest that NaB exerts its neurotrophic effect through the activation of CREB. Accordingly, cinnamon feeding also increased the activity of PKA and the level of phospho-CREB in vivo in the CNS. These results highlight a novel neutrophic property of cinnamon and its metabolite NaB via PKA – CREB pathway, which may be of benefit for various neurodegenerative disorders.

There are several advantages of NaB and cinnamon over other proposed anti-neurodegenerative therapies. First, both NaB and cinnamon are fairly nontoxic. Cinnamon has been widely used as flavoring material and spice throughout the world for centuries. Cinnamon is metabolized to NaB. NaB is excreted through the urine, if in excess.

Second, cinnamon and NaB can be taken orally, the least painful route.

Third, cinnamon and NaB are very economical compared to other existing anti-neurodegenerative therapies.

Fourth, after oral administration, NaB rapidly diffuses through the BBB. Similarly, after oral administration of cinnamon, we also detected NaB in the brain

Fifth, glycine toxicity is a problem in different neurological diseases because for movement disorders, glycine is one of the factors for inhibiting motor neurons. When impaired, glycinergic inhibition leads to spastic and hypertonic disorders such as featured in PD, multiple sclerosis (MS) and spinal cord trauma. NaB is known to combine with glycine to produce hippurate, a compound that is readily excreted in the urine. Because PD and MS patients exhibit significant elevation in plasma level of glycine, NaB and cinnamon may have added benefits for MS and PD.




Benzoate, a D-amino acid oxidase inhibitor, for the treatment of early-phase Alzheimer disease: a randomized, double-blind, placebo-controlled trial.

Abstract 

BACKGROUND: 
N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission is vital for learning and memory. Hypofunction of NMDAR has been reported to play a role in the pathophysiology of Alzheimer disease (AD), particularly in the early phase. Enhancing NMDAR activation might be a novel treatment approach. One of the methods to enhance NMDAR activity is to raise the levels of NMDA coagonists by blocking their metabolism. This study examined the efficacy and safety of sodium benzoate, a D-amino acid oxidase inhibitor, for the treatment of amnestic mild cognitive impairment and mild AD.

METHODS:
We conducted a randomized, double-blind, placebo-controlled trial in four major medical centers in Taiwan. Sixty patients with amnestic mild cognitive impairment or mild AD were treated with 250-750 mg/day of sodium benzoate or placebo for 24 weeks. Alzheimer's Disease Assessment Scale-cognitive subscale (the primary outcome) and global function (assessed by Clinician Interview Based Impression of Change plus Caregiver Input) were measured every 8 weeks. Additional cognition composite was measured at baseline and endpoint.

RESULTS:
Sodium benzoate produced a better improvement than placebo in Alzheimer's Disease Assessment Scale-cognitive subscale (p = .0021, .0116, and .0031 at week 16, week 24, and endpoint, respectively), additional cognition composite (p = .007 at endpoint) and Clinician Interview Based Impression of Change plus Caregiver Input (p = .015, .016, and .012 at week 16, week 24, and endpoint, respectively). Sodium benzoate was well-tolerated without evident side-effects.

CONCLUSIONS:
Sodium benzoate substantially improved cognitive and overall functions in patients with early-phase AD. The preliminary results show promise for D-amino acid oxidase inhibition as a novel approach for early dementing processes.


The implications

There are numerous implications, since cinnamon is very cheap and Sri Lanka Cinnamon is seen as very safe.

·        Take cinnamon to lower the risk of Parkinson’s and Alzheimer’s
·        Take cinnamon if you have got Parkinson’s or Alzheimer’s
·        Take cinnamon if you are type 1 or 2 diabetic to improve insulin sensitivity
·        Take cinnamon if you have high cholesterol (perhaps you do not like Statins)
·        Rather unexpectedly, it is suggested that cinnamon should also help multiple sclerosis (MS) because it reduces glycine toxicity which otherwise leads to spastic and hypertonic disorders
·        Trial cinnamon if you have Asperger’s, Schizophrenia, Autism, MR/ID and even COPD
·        Trial cinnamon if (ar)baclofen positively affects your cognitive or emotional function.


Note that some people diagnosed with “autism” have the opposite NMDA dysfunction, they have too much signaling rather than too little.

One method to enhance NMDA function is to raise the levels of D-amino acids by blocking their metabolism. Sodium benzoate is a D-amino acid oxidase inhibitor. Cinnamon is metabolized in the body to sodium benzoate.

Giving cinnamon to someone with hyperfunction of NMDA, should make their symptoms worse.

Sodium Benzoate/Cinnamon also increases the level of BDNF



It is thought that BDNF  increases excitatory synaptic signaling partly



“BDNF increases spontaneous network activity by suppressing GABAergic inhibition, the site of action of BDNF is predominantly postsynaptic, BDNF-induced suppression of GABAergic synaptic transmission is caused by acute downregulation of GABAA receptors, and BDNF effects are mediated by its TrkB receptor and require PKC activation in the postsynaptic cell.”


BDNF is commonly elevated in autism.


So you would then expect that some people with autism/schizophrenia would benefit while others would not.


Since some people are allergic to sodium benzoate it would wise to start with a tiny amount of cinnamon.


Cinnamon has been used medicinally for centuries.

Cassia cinnamon from China, Vietnam or Indonesia contains coumarin.  Courmarin is not good for you.  Cassia cinnamon is what is normally used in food products, to save money.


In an earlier post:



we saw that Clioquinol and  D-Cycloserine should help those with those with reduced NMDAR function.

Those with elevated NMDAR function would benefit from Memantine and Ketamine.

So logically Clioquinol and  D-Cycloserine should help schizophrenia:-



Nobody seems to have tried Clioquinol on schizophrenia.



Baclofen for Schizophrenia

It is would also be logical that if some people with schizophrenia do have reduced NMDAR signaling then Baclofen should also help them, just as Sodium Benzoate has been shown to do and therefore cinnamon should.

Going back to 1977 Baclofen was indeed found to be effective in some types of schizophrenia





Conclusion


I think that Cinnamon is a better bet than Sodium Benzoate, because you actually may have other substances involved, not just NaB.

The dose at which cinnamon shows tangible biological effects in humans (lowing cholesterol etc.) is around 3g a day.  For those who can swallow capsules, that would be 3 large (size 000) gelatin capsules a day, otherwise you have to find a way of eating a teaspoonful of cinnamon a day.

According to the research “cinnamon has been widely used as flavoring material and spice throughout the world for centuries. Cinnamon is metabolized to NaB. NaB is excreted through the urine, if in excess.”  So it looks a safe therapy, whether it helps autism will depend on the specific biology of that individual.










Monday 29 June 2015

MitoE, MitoQ and Melatonin as possible therapies for Mitochondrial Dysfunction in Autism. Or Dimebon (Latrepirdine) from Russia?









I did write an earlier post on Melatonin:-



Many people with either ADHD or ASD are taking Melatonin to help them sleep better. 

In most countries, other than United Kingdom, Melatonin is available cheaply as a supplement.

This post is about potential therapies for mitochondrial disease/dysfunction.  In this case disease/ dysfunction do not mean the same thing.  Some people appear to have mitochondrial disease of genetic origin that then triggers autistic regression.  Other people with different types of autism, which usually features oxidative stress, appear in various studies to have some mitochondrial dysfunction/abnormalities.  Mitochondria are very important to most aspects of human function.   Impairment of function is associated with many diseases.  In the case of the brain, both Alzheimer’s and Huntington’s disease are associated with mitochondrial dysfunction.

In the case of autism secondary to mitochondrial dysfunction, Dr Richard Kelley from Johns Hopkins has written about his therapy.  He focuses on reducing further oxidative damage and suggests that over time the brain can repair itself.  It was explained here:-



Other researchers like Chauhan and others on my Deans List, suggest that mitochondrial dysfunction affects non-regressive autism.

So antioxidants that target the mitochondria should be interesting for those with classic early-onset autism.

  

Melatonin
  
Melatonin has 4 main functions:- 
  

Circadian rhythm – regulation of the day-night cycle and hence sleep


Antioxidant

Melatonin is a powerful free-radical scavenger and wide-spectrum antioxidant.  In many less complex life forms, this is its only known function.  Melatonin is an antioxidant that can easily cross cell membranes and the blood–brain barrier. This antioxidant is a direct scavenger of radical oxygen and nitrogen species including OH, O2, and NO.  Melatonin works with other antioxidants to improve the overall effectiveness of each antioxidant.  Melatonin has been proven to be twice as active as vitamin E, believed to be the most effective lipophilic antioxidant. An important characteristic of melatonin that distinguishes it from other classic radical scavengers is that its metabolites are also scavengers in what is referred to as the cascade reaction. Also different from other classic antioxidants, such as vitamin C and vitamin E, melatonin has amphiphilic properties, this means it possesses both hydrophilic (water-loving, polar) and lipophilic (fat-loving) properties.

Immune system

While it is known that melatonin interacts with the immune system, the details of those interactions are unclear. Anti-inflammatory effect seems to be the most relevant and most documented in the literature. There have been few trials designed to judge the effectiveness of melatonin in disease treatment. Most existing data are based on small, incomplete clinical trials. Any positive immunological effect is thought to be the result of melatonin acting on high-affinity receptors (MT1 and MT2) expressed in immunocompetent cells. In preclinical studies, melatonin may enhance cytokine production, and by doing this counteract acquired immunodeficiences. Some studies also suggest that melatonin might be useful fighting infectious disease including viral, such as HIV, and bacterial infections, and potentially in the treatment of cancer.


Metal chelation

In vitro, melatonin can form complexes with cadmium and other metals.


Today’s post is only about the anti-oxidant potential of Melatonin, since that is likely what accounts for to its activity in mitochondria.


Oxidative Stress in Autism

We have seen time and again in this blog that Oxidative Stress is fundamental part of most types of autism. A further study, published three months ago, showed it was present in more than 88% of cases.  So it is about time that people started to treat it, rather than just write about it.



We have reviewed many antioxidants in this blog and it is apparent that there is not a one size fits all solution.  For Monty, aged 11 with ASD, NAC is the best; in other people ALA and/or carnosine have an additional effect.

We saw that Mitochondrial Disease occurring in childhood can present itself as severe regressive autism.  This autism secondary to Mitochondrial Disease is treatable, and once stabilized, symptoms gradually improved.  The therapy is centered on antioxidants to prevent further mitochondrial damage.

Other research has found that mitochondrial damage/dysfunction occurs in the majority of young people with autism, but not adults.  This research is based on analyzing samples from brain banks.

In an earlier post we looked at autophagy and Mitophagy.  This is in effect the cellular spring cleaning that should go on to ensure cellular health.  



I hypothesize that hyper-activation of calpains, also a feature of Alzheimer’s and Huntingdon’s disease, that leads to altered calcium homeostasis, may exist in autism.  This would explain the excess of intracellular calcium found in autism.  This would cause a decrease in autophagy/mitophagy and might account to the mitochondrial damage seen in brain samples.

All this means that it is worth a second look at oxidative stress in mitochondria in kids whose autism was not regressive.

The good news is that all the research already exists.

There is much recent research into the use of melatonin in autism, for reasons other than sleep.  It seems that at 3X higher than the sleep dose, the other effects become established.  So this would be about 10mg for many children.

There is a French study (MELDOSE)  that has just been completed that looks specifically into the dosage.



  





MitoQ and MitoE

When we looked at antioxidants a while back, it became clear that it is a case of “horses for courses”; meaning that if you want to improve memory one anti-oxidant is best, but it you want to treat an enlarged prostate another is best.

This meant to be an autism blog, but it is sometimes useful to digress.

The antioxidant has to reach its target destination and ideally it should accumulate there.  This means that the concentration is much higher at the target, than in the blood.

The reason why lycopene is great for the prostate, and is chemo-protective there, is that it happens to accumulates there.  The more you take orally the higher the level becomes locally.  Lycopene would be useless to treat mild memory loss, because it cannot cross the blood brain barrier.  So it is cocoa flavonoids for memory loss and lycopene for urinary retention (in males).

When it comes to statin induced myopathy, the official line is that the only effective treatment is to stop using the statin.  However many people find coenzymeQ10 makes mild pains go away.  Statins are known to deplete the body’s own coenzymeQ10 in mitochondria.  Some extra anti-oxidant coenzymeQ10 as a therapy for mild statin induced myopathy, makes perfect sense to me.  It is certainly safe to try.



When it comes to diabetic neuropathies, in countries whose medicine is German-based, we have already seen that the antioxidant Alpha Lipoic Acid (ALA) is widely used as an effective drug therapy.  In most Anglo-Saxon countries it is not used as a drug for diabetic neuropathies.  In Dr Kelley’s mitochondrial therapy for regressive autism he uses 10 mg/kg/day of ALA.

EPI-743 is a new drug that is based on vitamin E, another antioxidant.  It is being developed as a therapy for various types of mitochondrial disease, including Rett syndrome.



It has been suggested that a very similar product to EPI-743 already exists and is an OTC supplement.  In order to patent a drug it cannot be a natural substance, so I think Edison made something based on vitamin E that was different enough to be patentable.
I have mentioned it somewhere on this blog, I think it is Life Extension Gamma E Tocopherol/ Tocotrienols.

MitoE looks like the perfect vitamin E-based mitochondrial antioxidant.

MitoE  is cleverly made by attaching tocopherol (vitamin E) to a lipophilic cation that can accumulate several hundred-fold within mitochondria due to the negative charge inside mitochondria, delivering tocopherol in a high concentration.








When it comes to the mitochondria we have three interesting choices:-

  • MitoQ
  • MitoE
  • Melatonin


MitoQ  is made by attaching attached ubiquinol (a form of coenzyme Q10.) to a lipophilic cation that accumulate several hundred-fold within mitochondria due to the negative charge inside mitochondria, delivering ubiquinol in high concentrations.


While Dr Kelley uses coenzyme Q10 for autism, the Ubiquinol form is available.  If you believe the advertising, you need much less  Ubiquinol to achieve the same increase in circulating coenzymeQ10.

MitoQ is available as a supplement but at a dosage 90% less than that used in clinical trials.

It is being sold as an anti-aging therapy, the same type of people also use melatonin for the same purpose.

I would think that people with stain induced myopathy that does not respond to Coenzyme Q10 might want to try MitoQ before giving up on their statin.

In some people melatonin seems to lose its effect after a while (feedback loop to the Pineal gland?), the could keep the antioxidant effect in mitochondria by switching to MitoQ.



"When compared to synthetic, mitochondrial-targeted antioxidants (MitoQ and MitoE), melatonin proved to be a better protector against mitochondrial oxidative stress."


MitoE vs MitoQ vs Melatonin

In the following study they compared the potency of MitoE, MitoQ and melatonin.

Melatonin, which is cheap, did very well




  • Oxidative stress and mitochondrial dysfunction are key to the pathophysiology of sepsis.
  • The effects of antioxidants targeted to mitochondria on inflammation, oxidative stress, and organ dysfunction were tested in a rat model of acute sepsis.
  • Antioxidant treatment reduced mitochondrial damage, sepsis-induced inflammation, and organ dysfunction, a positive finding that should be tested in clinical trials.

MitoQ and MitoE are antioxidants attached to a lipophilic cation that accumulate several hundred-fold within mitochondria due to the negative charge inside mitochondria, delivering ubiquinol or tocopherol, respectively

Melatonin and its main metabolite 6-hydroxymelatonin also reduced cytokine responses, prevented mitochondrial dysfunction, and protected endogenous antioxidants in the same model

We hypothesized that MitoE and melatonin may have a similar beneficial effect in rats treated with LPS and PepG. In this proof-of-concept study, we investigated the effects of treatment with MitoQ, MitoE, or melatonin on biomarkers of organ damage, cytokine responses, oxidative damage, and mitochondrial function after administration of LPS from Escherichia coli plus PepG from Staphylococcus aureus in rats. This model reproducibly creates an inflammatory response, with mitochondrial dysfunction and early changes in organ function also seen in patients with sepsis



Dimebon (Latrepirdine)  

Dimebon is a Russian H1 anti-histamine, like Claritin.  Unlike Claritin it has some very unexpected effects on mitochondria and also NMDA receptors (and others).

A great deal of money was spent (wasted) in the US trying to make the renamed drug, Latrepirdine, into a treatment for Alzheimer’s and Huntington’s disease.  The results in mice looked great and the Stage II trials in Russia looked great, but the phase 3 trials failed.

There is a great deal of data on Dimebon (Latrepirdine) and it has many interesting effects.  It should make the mitochondria work better, be neuroprotective and it should reduce activity at NMDA receptors.

So for a subgroup of people with autism and some mitochondrial dysfunction, this 20 years old antihistamine might be very helpful.

There are claims for it being nootropic, meaning it makes you smarter, but nobody has suggested it for autism.  But then nobody has suggested MitoE or MitoQ for autism either. 

Many antihistamines have secondary actions and we have covered some in this blog like Cyproheptadine.  Rupatadine and Azelastine are H1 antihistamines that are potent mast cell stabilizers.

In the West you can buy Dimebon from the nootropic people, I expect in Russia is it just a cheap 20 year old hay fever pill.
In the recent clinical trials in humans the low dose was 5mg three times a day and the high dose was 20mg  three times a day.   The antihistamine in Russia is produced in 10mg form.

So whereas the OTC MitoQ is 10% of the trial dosage, the standard antihistamine dose Dimebon is similar to the Alzheimer’s trial dose.  From the perspective of safety this is very relevant.




Many antihistamines have secondary effects. Dimebon has numerous:-














Coming back to Alzheimer’s it seems, as with cancer, that you can only really expect to halt the disease if you act (very) early or preventatively.  The trials usually take place in people whose brains are already severely compromised.




To some researchers, the Dimebon failure, and the failure of many other Alzheimer’s drug candidates to date, points to a larger problem:  The treatments are started too late in the course of the disease.
“What you want in such trials are people who are just starting to lose neurons, but typically by the time an Alzheimer’s patient goes to see a neurologist, his or her brain has already been severely damaged,” says Jeffery Kelly, an investigator at the Scripps Research Institute in La Jolla, California, whose work has focused on amyloid-associated conditions. “Considering the way the Alzheimer’s trials are being done now, I’m not sure that even a great drug could be discerned as such.”


  


In response to the continuing negative outcomes of Alzheimer’s clinical trials, researchers have been designing some new trials in which patients are treated earlier in the disease course—when they may respond better—and for periods longer than 18 months, to allow more divergence between treatment and placebo groups. But this “incremental” change in trial designs, as Schneider puts it, still fails to take into account that different drugs have different possible mechanisms of action, different sources of outcome variability, and different possible windows of optimal effectiveness in the disease course. “In principle some drugs could show effects at six months and twelve months while other drugs might not show an effect for a much longer period,”


There are other diseases which feature mitochondrial dysfunction that might benefit more from Dimebon than AD/HD, autism is just one.


 
Conclusion

MitoE and MitoQ are very clever and there are many trials and experiments that have been done using them.  Only MitoQ is available to buy; a 5mg capsule is available OTC.

5mg of MitoQ should have the potency at the mitochondria  of something like 4,000 mg of coenzymeQ10.  The usual “high strength” coenzymeQ10 supplement are 100mg.  Dr Kelley, from Johns Hopkins, suggests 10 mg/kg/day of Coenzyme Q10 for regressive autism, as part of his mitochondria therapy.  So you would think MitoQ should be good for mitochondrial damage in some types of autism.

While MitoQ is quite expensive, melatonin is not.  I wonder why  Dr Kelley does not try/use melatonin.  You can reasonably expect 10 mg of melatonin to have a non-sleep effect.  The drawbacks are that it will send you to sleep and long term use may have an effect on natural melatonin production.

Taking melatonin as a pill should in theory then cause the pineal gland to produce less melatonin.  Over a long period of time this might reduce the body’s capacity to produce its own  melatonin, should you stop giving the pills.  Melatonin is very widely prescribed as drug to treat sleeping problems in ADHD and so you would think any side effects would have been noticed and published by now.  Many kids with autism already receive a lower dose of melatonin to help with sleep. 

Dimebon is in this post, but is not directly comparable to MitoE, MitoQ and Melatonin. 

I rather doubt the OTC MitoQ is potent enough to do much more good than large doses of CoenzymeQ10, which is cheap.

Dimebon is still being researched for Alzheimer’s (see below), even after Pfizer have given up on it.  Autism is not Alzheimer’s or Huntingdon’s, and there are clearly hundreds of variants of autism; but if there is mitochondrial dysfunction of some kind, I cannot see any harm trying these “hay fever pills” for a month.



In people diagnosed with regressive autism secondary to mitochondrial disease, perhaps just forget Claritin for the summer and buy Dimebon?