UA-45667900-1
Showing posts with label Schizophrenia. Show all posts
Showing posts with label Schizophrenia. Show all posts

Friday 17 November 2017

Beetroot - Cold Hands, Leukoaraiosis, Psychosis and Anxiety in Schizophrenia





Karimnagar, India, where Schizophrenic Rats respond well to Beetroot Juice

If you are not old enough to be interested in dementia, skip through those parts of this post and read about schizophrenic mice and beetroot juice.
There have been earlier posts regarding using nitric oxide (NO) to improve circulation and derive a cognitive benefit.
Many sportsmen have followed up on the research studies that show exercise endurance is improved after taking beet root juice. Since it is not a banned substance they are free to benefit from it.
We know that beet root does not only reduces blood pressure but it actually can increases perfusion, or blood flow, to the brain. Reduced blood flow to the brain is a feature of some dementia. Studies have used MRI to show that circulation is increased. A follow up study has recently been published which shows that beet root juice combined with exercise produced MRI results that resemble those of much younger adults.
In a previous post we saw that cocoa flavanols improved memory in older people and in effect brought them back to where they used to be 20 years previously. With cocoa the mechanism is not fully understood by is believed to “activate the nitric oxide system” in the brain. Cocoa does not produce nitric oxide in the way beet root does. Foods like beetroot and spinach contain large amounts of nitrates and they cause a measurable increase in circulating nitrites in the blood. The nitrites can later on become nitric oxide.
There is a lot of research into cocoa flavanols, mainly in relation to its benefit for those heart disease and more recently dementia. It also has benefits for anyone with diabetes, because it increases insulin sensitivity, as some readers of this blog have confirmed.
Cocoa flavanols appear to indirectly increase eNOS which then leads to more Nitric Oxide (NO). In addition there are antioxidant effects. eNOS reacts with L-arginine to produce NO.
But there is another way to make Nitic Oxide (NO), via nitrite that is circulating in your blood.  To increase nitrite you just eat nitrates, green leafy vegetables and beetroot.
It appears that eNOS does affect nitrite levels, so perhaps more eNOS means more NO is produced and then nitrite stays as nitrite and so the level of nitrite increases. Everything is inter-related.




Interestingly, statin drugs increase circulating nitrite levels just like beetroot.
NO bioavailability is determined by the balance between NO biosynthesis and its degradation by reactions with hemoglobin and reactive oxygen species (ROS).



So in people with oxidative stress there will be less NO. 

Nitric oxide (NO) is a potent signaling molecule that influences an array of physiological responses. It was traditionally assumed that NO was derived exclusively via the nitric oxide synthase (NOS) family of enzymes. This complex reaction requires a five electron oxidation of L-arginine and is contingent on the presence of numerous essential substrates (including O2) and co-factors. Recently an additional, O2-independent, NO generating pathway has been identified, where nitrite (NO2 ) can undergo a simple one electron reduction to yield NO. NO2 is produced endogenously from the oxidation of NO and also from the reduction of dietary nitrate (NO3 ) by facultative bacteria residing on the tongue. Recent data show that dietary NO3 supplementation, which increases the circulating plasma [NO2 ], reduces the O2 cost of submaximal exercise in healthy humans. This finding is striking given that efficiency during moderate-intensity exercise has been considered to be immutable. Therefore, dietary NO3 supplementation may represent a practical and cost-effective method to improve exercise efficiency and exercise tolerance in humans. Given that a NO3 -rich diet may have numerous cardiovascular and other health benefits, dietary NO3 intake may have important implications for human lifelong health and performance.
   
Cold hands
People with poor circulation tend to have cold hands and feet. From the comments in this blog it appears that many people with autism have cold hands/feet.
Do the many Nitric Oxide producing therapies used by sportsmen “warm up” cold hands?
Well we do actually now have some data on this subject. 


At least in the case of beetroot the answer is no.


L-arginine, L-citrulline, eNOS and NO    
It does appear that more eNOS can be beneficial. More eNOS means more NO as long as there is enough L-arginine. If you want to make more L-arginine, the most effective way is to eat L-citrulline, which is abundant in water melon.
It looks like some people lack arginine while others lack eNOS.  The males in clinical trials of citrulline and water melon, as a Viagra alternative, must lack L-arginine.
I think in autism the problem is lack of eNOS.
I thought L-citrulline might increase the positive effect of Agmatine that is very evident in Monty, aged 14 with ASD, but it has no additional effect.
Maybe some people do lack eNOS and l-arginine.
You do not need eNOS to make nitric oxide from the nitrites produced by beetroot juice.

Agmatine
We previously saw that the OTC supplement Agmatine increases eNOS, but it also actually affects BDNF.

Taken together, the findings of this study show that long-term agmatine administration increases the BDNF levels in both the hippocampus and amygdala, and also peripherally the NO synthesis and/or bioavailability, and corrects the age-related endothelial dysfunction, and hence may help in recovering vascular aging and vascular dementia.


Leukoaraiosis
Leukoaraiosis is a new word to this blog, it is very relevant to dementia, but it would likely only be relevant to autism if there has been hypoxia (lack of oxygen). Two readers of this blog do report hypoxia.
There is a lot of information in this blog about treating dementia and so for the sake of completeness I will elaborate further.
It appears that most people with Mild Cognitive Impairment (MCI) or dementia have lsome eukoaraiosis.
Leukoaraiosis also referred as ischemic demyelination or age-related white matter disease, is a radiological term given to white spots that appear on your MRI scan.

It is commonly observed in elderly people, and it is often a finding related to vascular dementia.  Histology from these lesions show atrophy of axons and decreased myelin. It is thought that localized hypoxia is what caused the damage.

On both CT and MRI, leukoaraiosis is characterized by bilateral patchy or confluent white matter changes.
So if your “autism” resulted from hypoxia, you might expect to see white spots on your MRI scan.
What is interesting is that leukoaraiosis may contribute to ongoing mild hypoxia.
It always seemed odd that people might benefit from HBOT (hyperbaric oxygen) years after they suffered acute hypoxia; but if the acute hypoxia left leukoaraiosis, perhaps this then reduces ongoing blood flow and thus leaves mild localized hypoxia, which does respond to treatment.
When blood flow is interrupted to part of the brain your doctor would call that a stroke.  A mini-stroke occurs when that blood flow is only temporarily interrupted.  These so-called transient ischemic attacks (TIA) are a warning sign of what may come shortly afterwards.
It appears in many people mini-strokes occur but remain unreported.
As a result of mini-strokes and/or leukoaraiosis perfusion in older people is not as good as in younger people and so cognition and memory suffer.
This can be partially addressed by making your blood more “slippery” using low dose aspirin, but the risk is that over the years blood vessels have narrowed and become brittle.  You then risk micro bleeds where the blood vessel cracks and the “slippery” blood can leak out.  This does happen in the brain
Cerebral microbleeds are not rare and are seen as another cause of cognitive impairment.





The conclusion for adults is that prevention is much better than cure. A diet rich in nitrates (spinach beetroot etc) and flavanols (cocoa etc) plenty of exercise and avoiding half a century of high cholesterol looks a wise choice. 

Emerging evidence suggests that silent strokes or lacunar infarctions, leukoaraiosis, and vascular diseases may be associated with cognitive impairment including dementia. We assessed the occurrence of these risk factors among various spectrum of cognitive dysfunction. A retrospective review of patients evaluated in Guam with the diagnosis of Memory Loss, Mild Cognitive Impairment (MCI) and Dementia from August 2006 to December 2014 was conducted. The history of stroke and co-morbid vascular diseases was identified. The neuro-imaging studies were reviewed to determine the presence of silent strokes and leukoaraiosis in patients without history of a clinical stroke. There were 585 patients included in the analysis. One hundred forty two patients having a diagnosis of memory loss, 95 have MCI and 348 have dementia. A history of stroke was present in 29% of patients with Memory Loss, 20% of patients with MCI and 30% of patients with dementia. Silent strokes without a history of clinical stroke were present in 10% of patients with memory loss and MCI, and 15% of patients with dementia. The presence of Leukoaraiosis was present in 50% of patients with memory loss, 56% of patients with MCI, and 60% of patients with dementia. Occurrences of vascular diseases were higher in patients with dementia than patients with Memory Loss and MCI. In conclusion, silent strokes, leukoaraiosis and vascular diseases are found to be more prevalent in patients with Dementia than those with Memory Loss and MCI.  

Oxygen deprived areas of the brain can change the way the brain functions in older adults. These areas of the brain were thought to be just a normal part of aging and could lead to other diseases such as Alzheimer's or stroke.
Leukoaraiosis is described as a condition where brain scans (CT or MRI) show bright white dots. These areas of the brain are deprived of oxygen and were considered to be a normal part of aging process.
"There has been a lot of controversy over these commonly identified abnormalities on MRI scans and their clinical impact. In the past leukoaraiosis has been considered a benign part of the aging process, like gray hair and wrinkles," said Kirk M. Welker, M.D., assistant professor of radiology in the College of Medicine at Mayo Clinic in Rochester, Minn., in a press release.
The condition is common in people who are above the age of 60. Recently, leukoaraiosis has been linked to diseases like Alzheimer's, hypertension and stroke.
"We know that aging is a risk factor for leukoaraiosis, and we suspect that high blood pressure may also play a role," Dr. Welker said.
Researchers from the Mayo Clinic obtained brain scans from 18 participants over the age of 60. The brain scans of these participants were matched against those obtained from a control group. Researchers found that these participants had lesions in the brain that were 25 millimeters long while some lesions in the brains of control group participants were about five millimeters long.
The participants were given tests based on words and visual patterns. All the participants were connected to brain scanners during the tests.
The participants of control group and study group completed the task with similar speed. However, researchers found that the brains of people who had moderate leukoaraiosis worked differently than people who had mild lesions.
They found that areas of brains that performed word-association tasks weren't activated during the test but areas that process visual patterns were highly activated.
"Different systems of the brain respond differently to disease. White matter damage affects connections within the brain's language network, which leads to an overall reduction in network activity," Dr. Welker said.
Welker said that diagnosing leukoaraiosis is important in people who are above 60, especially those who have to undergo brain surgery and those who are part of scientific research study.
Previous research shows that the probability of stroke increases with increase in leukoaraiosis spread.
"Our results add to a growing body of evidence that this is a disease we need to pay attention to Leukoaraiosis is not a benign manifestation of aging but an important pathologic condition that alters brain function," Welker said.  

Finally, now you know all about leukoaraiosis, back to beet root juice.


Background:
Exercise has positive neuroplastic effects on the aging brain. It has also been shown that ingestion of beet root juice (BRJ) increases blood flow to the brain and enhances exercise performance. Here, we examined whether there are synergistic effects of BRJ and exercise on neuroplasticity in the aging brain.
Methods:
Peak metabolic equivalent (MET) capacity and resting-state magnetic resonance imaging functional brain network organization are reported on 26 older (mean age = 65.4 years) participants randomly assigned to 6 weeks of exercise + BRJ or exercise + placebo.
Results:
Somatomotor community structure consistency was significantly enhanced in the exercise + BRJ group following the intervention (MBRJ = -2.27, SE = 0.145, MPlacebo = -2.89, SE = 0.156, p = .007). Differences in second-order connections between the somatomotor cortex and insular cortex were also significant; the exercise + BRJ group (M = 3.28, SE = 0.167) had a significantly lower number of connections than exercise + placebo (M = 3.91, SE = 0.18, p = .017) following the intervention. Evaluation of peak MET capacity revealed a trend for the exercise + BRJ group to have higher MET capacity following the intervention.
Conclusions:
Older adults who exercised and consumed BRJ demonstrated greater consistency within the motor community and fewer secondary connections with the insular cortex compared with those who exercised without BRJ. The exercise + BRJ group had brain networks that more closely resembled those of younger adults, showing the potential enhanced neuroplasticity conferred by combining exercise and BRJ consumption.  
BRJ is clearly an encouraging nutritional supplement that may improve functional health in older adults, and the proposed primary mechanism of benefit of BRJ is the rise in plasma nitrite caused by the high levels of dietary nitrate in BRJ (32). Consumed nitrate, once absorbed from the intestine, is taken up from the plasma by salivary glands and concentrated in saliva; nitrate is subsequently reduced to nitrite by oral bacteria and ultimately absorbed into the circulatory system (32,33). Nitrite appears to be reduced to NO during hypoxia. NO is an antioxidant and a potent vasodilator (34,35), is a critical relaxation factor synthesized in endothelial cells (36,37), and is key to vascular compliance. For this study, we hypothesized that reductions in brain blood flow associated with hypertension and aging associated leukoaraiosis result in low-grade hypoxia (38) and that these reductions might be offset by the NO-mediated vasodilation in hypoxic regions due to the increased amount of circulating nitrite from the BRJ ingestion. Indeed, results from our lab have shown that 24 hours of a high nitrate diet supplemented with a single dose of BRJ leads to increased regional CBF in older adults (39). Coupled with exercise (a hypoxia-inducing activity), we propose that the biological mechanism underlying the neural plasticity shown in Figure 1 resulted from increased NO bioavailability after drinking BRJ





Supplementation with nitrate (NO3)-rich beetroot juice has been shown to improve exercise performance and cardiovascular (CV) responses, due to an increased nitric oxide (NO) availability. However, it is unclear whether these benefits are greater in older adults who have an age-related decrease in NO and higher risk of disease. This systematic review examines 12 randomised, crossover, control trials, investigating food-based NO3 supplementation in older adults and its potential benefits on physiological and cognitive performances, and CV, cerebrovascular and metabolic health. Four studies found improvements in physiological performance (time to exhaustion) following dietary NO3 supplementation in older adults. Benefits on cognitive performance were unclear. Six studies reported improvements in CV health (blood pressure and blood flow), while six found no improvement. One study showed improvements in cerebrovascular health and two found no improvement in metabolic health. The current literature indicates positive effects of dietary NO3 supplementation in older adults on physiological performance, with some evidence indicating benefits on cardiovascular and cerebrovascular health. Effects on cognitive performance were mixed and studies on metabolic health indicated no benefit. However, there has been limited research conducted on the effects of dietary NO3 supplementation in older adults, thus, further study, utilising a randomised, double-blind, control trial design, is warranted.
  
Beet Root and Schizophrenia
Having read about cocoa and beet root a long time ago, I did try both on myself. I think beet root has effects that go well beyond lowering blood pressure.
There are of course no trials of beet root in autism, but there is one in the next closest thing, schizophrenia. Unfortunately it was in rats, but nonetheless the findings are interesting.
   
In recent years, there has been much focus on the apparent heterogeneity of schizophrenic symptoms. By contrast, this article proposes a unifying account emphasizing basic abnormalities of consciousness that underlie and also antecede a disparate assortment of signs and symptoms. Schizophrenia, is fundamentally a self-disorder or ipseity disturbance is  characterized by complementary distortions of the act of awareness, hyper reflexivity and diminished self-affection. Anxiety impacts people in ways that they are unaware. In the presence of anxiety, attention is highly directed towards threatening information. Recently, anxiety was found to impact task switching performance when threatening stimuli were present. In the current study, we examined the Anxiolytic and antipsychotic activity of Beet Root Juice (BRJ) in rats. This study reveals that the BRJ has showed decreased effects of turning behaviour, weaving behaviour, head bobbing and falling behaviour. It also showed decreased effect of loco motor activity and increase in catalepsy scoring. Thus it shows anti psychotic and anti anxiety effects.

Ketamine-Induced Stereotypic Behaviour in Mice
Animals were divided into five groups and each group consisted of four animals. The control animals received normal diet and treated with Ketamine (50 mg/kg) for 15 consecutive days. The animals of standard groups received Olanzapine (5 mg/kg) after 30 min Ketamine was given, (50 mg/kg) for 15 consecutive days. The animals of test groups received different concentrations of BRJ (2 , 4, 8% w/w) through a specially prepared diet and after 30 min Ketamine was given (50 mg/kg) for 15 consecutive days. Each rat was individually placed into plastic cages (37 × 24 × 30 cm3) divided into quadrants by lines on the floor and allowed to acclimatize for at least 30 min before the testing began. Behavioural tests were performed between 10 a.m. and 4 p.m. The stereotypic behaviour was assessed by counting the number of turning, weaving, head-bobbing and ataxia. Turning was measured by counting turn around every 15 min over 60 min. Weaving and head-bobbing were measured by counting its neck wave right and left, and go up and down every 15 min over 60 min. Ataxia was assessed by counting the number of falls of each rat on the floor of the cage every 15 min over 60 min period

Beet root juice was as effective as Olanzapine, an antipsychotic medication used to treat schizophrenia and bipolar disorder. (Ketamine is what creates the stereotypy)



Beet root juice was more effective than Haloperidol, a typical antipsychotic medication used in the treatment of schizophrenia, tics in Tourette syndrome and  mania in bipolar disorder


Beet root was as effective as Diazepam (aka Valium), is a medication of the benzodiazepine family that typically produces a calming effect 



I found the above paper very surprising. It certainly supports my feeling about the effects of beet root juice being beyond just lowering blood pressure. It definitely has a calming effect on me, so it is not just in rats.

Beetroot Juice for Autism?
Why not try just try it?
It does taste better when it is 25% apple juice and 75% beetroot.
You can also use freeze dried beetroot powder, which can be put in capsules.
It is not clear the amount of powder you need.
>150 ml a day of juice gives the exercise endurance effect and the calming (Diazepam) effect.  I would guess 2 or 3 fresh beet root would be equivalent.
Freeze dried beet root powder appears to remove 90% of the weight. So 3g of powder equals about 30g of beetroot.
Some people use a teaspoon of beetroot powder to control blood pressure. 
I expect there are studies on beetroot powder and blood pressure.
I concluded in Monty, aged 14 with ASD, that while Agmatine has a significant effect from the first day citrulline has no noticeable effect whatsoever (so no lack of L-arginine).  Having just read about the rats from Karimnagar, India in the above study I started offering Monty some of my beetroot juice. I have filled some large gelatin capsules with freeze dried beetroot, but it is not clear how much you would need.  Better to stick with the juice and see if it does anything.
Beet root is rich in betaine, which is also good for you.
I think Agmatine increases eNOS and also NO, by increasing dietary nitrate we make more nitrite which is available to make more NO as it gets depleted by oxidative stress (Reactive Oxygen Species). It looks like some people with autism have no shortage of L-arginine and so there is no effect from arginine or citrulline supplementation.
I think there is a rationale to consider Agmatine and Beetroot juice. We do have the surprising results from the schizophrenic rats, which do suggest there can be a benefit. 
I have to say that after a year of drinking 150ml of beetroot juice a day, I am a convert. You do get used to the taste. 
Beetroot, cinnamon and cocoa flavanols are quite potent potential non-drug therapies for dementia and not forgetting where you left your car keys.







Thursday 9 November 2017

Variable Expression of GABRA5 and Activation of α5 -  a Modifier of Cognitive Function in Autism?


Today’s post sounds complicated. We actually already know that the gene GABRA5, and hence the alpha 5 sub-unit of GABAA receptors, can affect cognition, but we do not know for sure in whom it is relevant.
Most readers of this blog are lay people, as such we tend to be predisposed to the idea that autism is somehow “hardwired”, something that just happened and cannot be reversed. Some of autism is indeed “hardwired”, you cannot take an adult with autism and “re-prune” his synapses, to produce a more elegant robust network in his brain. But much can be done, because many things in the brain are changing all the time, they are not fixed at all. Today’s post is good example.
GABA is the most important inhibitory neurotransmitter in the brain. There are two types of GABA receptor, A and B. These receptors are made up of sub-units. There are many different possible combinations of sub-units to make GABAA receptors. These combinations are not fixed, or “hard-wired”; they vary all the time.
The composition of the GABAA receptor changes its effect. It can change how you feel (anxiety) and it can change you think/learn.
You can actually measure GABRA5 expression in different regions of the brain in a test subject using a PET-CT (Positron Emission Tomography–Computed Tomography) scan and it has been done in some adults with high functioning autism. This machine looks like a big front-leading washing machine, just a bit cleverer. 

our primary hypothesis was that, compared to controls, individuals with ASD have a significant reduction in α5 GABA receptor availability in these areas.
Due to the small sample size, we could not examine possible correlations between GABAA binding and particular symptoms of ASD, age, IQ, or symptoms of comorbidities frequently associated with ASD, such as anxiety disorders, OCD and depression. We were also unable to address the effects of possible neuroanatomical differences between people with ASD and controls, which might lead to partial volume effects in PET studies. However, the modest magnitude of the volumetric differences seen in most studies of high-functioning ASD suggests that it is unlikely that these could fully explain the present findings.

These preliminary results suggest that potentiation of GABAA signaling, especially at GABAA α5-subunit containing receptors, might potentially be a novel therapeutic target for ASD. Unselective GABAA agonists and positive allosteric modulators, such as benzodiazepines, have undesirable features such as abuse potential and tolerance, but more selective modulators might avoid such limitations. Further research should extend this work in a larger sample of ASD individuals. It would also be interesting to use PET with the ligand [11C]Ro15-4513 to measure GABAA in disorders of known etiology characterised by ASD symptoms, such as Fragile X and 15q11-13 duplication
In summary, we present preliminary evidence of reduced GABAA α5 expression in adult males with ASD, consistent with the hypothesis that ASD is characterised by a defect in GABA signaling. 

The prevalence of autism spectrum disorders (ASDs), which affect over 1% of the population, has increased twofold in recent years. Reduced expression of GABAA receptors has been observed in postmortem brain tissue and neuroimaging of individuals with ASDs. We found that deletion of the gene for the α5 subunit of the GABAA receptor caused robust autism-like behaviors in mice, including reduced social contacts and vocalizations. Screening of human exome sequencing data from 396 ASD subjects revealed potential missense mutations in GABRA5 and in RDX, the gene for the α5GABAA receptor-anchoring protein radixin, further supporting a α5GABAA receptor deficiency in ASDs.

The results from the current study suggest that drugs that act as positive allosteric modulators of α5GABAA receptors may ameliorate autism-like behaviors 
  

Too many or too few the α5GABAA receptors or too much/little activity?

Regular readers will know that autism is all about extremes hypo/hyper, macro/micro etc. The same is true with α5GABAA, too few can cause autistic behaviors, but too many can impede learning. You need just the right amount.
The next variable is how well your α5GABAA are behaving, because even if you have an appropriate number of these receptors, you may not have optimal activity from them. Over activity from α5GABAA is likely to have the same effect as having too many of them.
Here it becomes very relevant to many with autism and inflammatory comorbidities, because systemic inflammation has been shown to activate α5GABAA. It has been shown that increased α5GABAA receptor activity contributes to inflammation-induced memory deficits and, by my extension, to inflammation-induced cognitive decline.

α5GABAA Receptors Regulate Inflammation-Induced Impairment of Long-Term Potentiation


Systemic inflammation causes learning and memory deficits through mechanisms that remain poorly understood. Here, we studied the pathogenesis of memory loss associated with inflammation and found that we could reverse memory deficits by pharmacologically inhibiting α5-subunit-containing γ-aminobutyric acid type A (α5GABAA) receptors and deleting the gene associated with the α5 subunit. Acute inflammation reduces long-term potentiation, a synaptic correlate of memory, in hippocampal slices from wild-type mice, and this reduction was reversed by inhibition of α5GABAA receptor function. A tonic inhibitory current generated by α5GABAA receptors in hippocampal neurons was increased by the key proinflammatory cytokine interleukin-1β through a p38 mitogen-activated protein kinase signaling pathway. Interleukin-1β also increased the surface expression of α5GABAA receptors in the hippocampus. Collectively, these results show that α5GABAA receptor activity increases during inflammation and that this increase is critical for inflammation-induced memory deficits.


We saw in an earlier post that overexpression of GABRA5 is found in slow learners and we know that this is a key target of Down Syndrome research, aimed at raising cognitive function.

What can be modified?
It appears that you can modify the expression of GABRA5, which means you can increase/decrease the number of GABAA receptors that contain an α5 subunit.
You can also tune the response of those α5 subunits. You can increase it or decrease it.
Activation of the α5 subunit is thought to be the reason why benzodiazepine drugs  have cognitive (reducing) side effects. By extension, inverse agonists of α5 are seen as likely to be nootropic.
One such drug is LS-193,268  is a nootropic drug invented in 2004 by a team working for Merck, Sharp and Dohme.
A complication is that you do not want to affect the α2 subunit, or you will cause anxiety. So you need a highly selective inverse agonist.
The new Down Syndrome drug, Basmisanil, is just such a selective inverse agonist of α5.
Basmisanil (developmental code names RG-1662, RO5186582) is a highly selective inverse agonist/negative allosteric modulator of α5 subunit-containing GABAA receptors which is under development by Roche for the treatment of cognitive impairment associated with Down syndrome.  As of August 2015, it is in phase II clinical trials for this indication.


A contradiction
As is often the case, there is an apparent contradiction, because on the one hand a negative allosteric modulator should be nootropic in NT people and appears to raise cognition in models of Down Syndrome; but on the other hand results from a recent study suggests that drugs that act as positive allosteric modulators of α5GABAA receptors may ameliorate autism-like behaviors.
So which is it?
Quite likely both are right.
It is exactly as we saw a long while back with NMDAR activity, some people have too much and some have too little. Some respond to an agonist, some to an antagonist and some to neither.
What we can say is that fine-tuning α5GABAA in man and mouse seems a viable option to enhance cognition in those with learning difficulties.
The clever option is probably the positive/negative allosteric modulator route, the one being pursued by big Pharma for Down Syndrome.
I like Dr Pahan’s strategy from this previous post, for poor learners and those with early dementia

to use cinnamon/NaB to reduce GABRA5 expression, which has got to consequently reduce α5GABAA activity.
All of these strategies are crude, because what matters is α5GABAA activity in each part of the brain. This is why changing GABRA5 expression will inevitably have good effects in one area and negative effects in another area. What matter is the net effect, is it good, bad or negligible?
The fact that systemic inflammation increases α5GABAA activity may contribute to the cognitive decline some people with autism experience.
We previously saw how inflammation changes KCC2 expression and hence potentially increases intra cellular chloride, shifting GABA towards excitatory.
Ideally you would avoid systemic inflammation, but in fact all you can do is treat it.
Increasing α5GABAA activity I would see as possible strategy for people with high IQ, but some autistic features.
I think those with learning problems are likely to be the ones wanting less α5GABAA activity.
The people for whom “bumetanide has stopped working” or “NAC has stopped working” are perhaps the ones who have developed systemic inflammation for some reason.  You might only have to measure C-reactive protein (CRP) to prove this.




More reading for those interested:-










Wednesday 4 October 2017

Sodium Benzoate and GABRA5 - Raising Cognitive Function in Autism


I am still looking for additional cognitive enhancing autism therapies. It seems the best way to find them may actually be to reread my own blog.
A long time ago I suggested that Cinnamon could well be therapeutic in autism, most likely (but not entirely) due to the sodium benzoate (NaB) it produces in your body.


Sodium benzoate (NaB) is both a drug used to reduce ammonia in your blood and a common food additive that acts as a preservative.
NaB has many biological effects.  One effect relates to a protein called DJ-1, which is produced by a Parkinson’s gene (PARK7). I had noticed that when the body tries to turn on its anti-oxidant genes after the switch Nrf2 is activated, the process cannot proceed without enough DJ-1.  This is why Peter Barnes, from my Dean’s list, suggested that patients with COPD might benefit from more DJ-1.  COPD is a kind of severe asthma which occurs with severe oxidative stress, the oxidative stress stops the standard asthma drugs from working, which is why so many people die from COPD. Oxidative stress is a key feature of most autism.
To make more DJ-1 you can use sodium benzoate (NaB) which is produced gradually in the body if you eat cinnamon. So in theory cinnamon is like sustained release NaB, it is also extremely cheap.
Independently of all this NaB has been trialled in schizophrenia and a further larger trial is in progress.  Autism is not schizophrenia, but the hundreds of genes miss-expressed in autism do overlap with the hundreds of genes miss-expressed in schizophrenia, so I call schizophrenia autism’s big brother. 

GABAA α5 subunit
The scientist readers of this blog may recall that there are two sub-units of the GABAA receptor that I am seeking to modify, to improve cognition.  One is the α3 subunit and the other is the α5 subunit. Low dose clonazepam works for α3.
The α5 subunit is the target of a new drug to improve cognition in people with Down Syndrome (DS).
Very recent research links the same sub-unit to autism, so it is not just me looking at this.

Reduced expression of α5GABAA receptors elicits autism-like alterations in EEG patterns and sleep-wake behavior                                                                                                              

As is often the case, it looks like some people might need to “turn up the volume” from α5GABAA receptors and others might need to turn it down.
I had yet to find a practical way to affect α5GABAA. Now I have realized that I have already stumbled upon such a way to do it.
Pahan, a researcher in Chicago, has shown that he can improve cognition in mice using cinnamon. He noted that in poor learners GABRA5 was elevated, but that after one month of cinnamon GABRA5 was normalized. 

Cognitive loss in autism, schizophrenia and Down Syndrome
Most people might associate MR/ID with autism and indeed Down Syndrome; you likely do not really consider people with schizophrenia to have MR/ID. In reality, cognitive loss is a common feature/problem in schizophrenia and indeed bipolar, just not enough to be called MR/ID.
Those researching schizophrenia seem to focus on NMDA receptors, whereas my blog only goes into the great depths of science when it comes to GABAA . To the schizophrenia researchers NaB is interesting because it is a d-amino acid oxidase inhibitor, which means that it will enhance NMDA function.  So if you are one of those people with too little NDMA activity (NMDAR hypofunction) then sodium benzoate should make you feel better.
The schizophrenia researchers think NaB is helpful because of its effect on NMDA, for me it is GABRA5 that is of great interest. The same should be true for parents of kids with Down Syndrome (DS). We have seen that bumetanide should, and indeed does, help DS.  It looks to me that NaB/Cinnamon should further help them and no need to wait for Roche to commercialize their GABRA5 drug. 

NaB and Cinnamon
I am yet to determine how much NaB is produced by say 3g of cinnamon.
The clinical trials of NaB use 1g per day in adults. People using cinnamon, like Dr Pahan, for cognition or just lowing blood pressure and blood sugar use around 3g.
It is quite difficult to give a teaspoonful of cinnamon to a child, whereas NaB dissolves in water and does not taste so bad. 

NaB and Cinnamon Trials
I did trial cinnamon by putting it in in large gelatin capsules and at the time I did think it had an effect, but I doubt I got close to Dr Pahan’s dosage.
A prudent dose of NaB would seem to be 6mg/Kg twice a day. This is similar to what is now being trialed in schizophrenia.
A small number of people do not tolerate NaB and logically also cinnamon.  They are DAAO inhibitors, just like Risperidone. People who are histamine intolerant need to avoid DAAO inhibitors. If you have allergies it does not mean you are histamine intolerant.
I did try NaB on myself and I did not notice any effect.


Conclusion
I had already obtained some NaB to follow up on my earlier trial of cinnamon.  Having read about the effect of NaB on GABRA5 expression, I am even more curious to see if it helps.
Any positive effect might be due to DJ-1 boosting the effect of Nrf-2, it might be boosting NMDA or it might be reducing GABRA5 expression. In some people all three would be useful.


Press release:- 


Pahan a researcher at Rush University and the Jesse Brown VA Medical Center in Chicago, has found that cinnamon turns poor learners into good ones—among mice, that is. He hopes the same will hold true for people.

His group published their latest findings online June 24, 2016, in the Journal of Neuroimmune Pharmacology.

"The increase in learning in poor-learning mice after cinnamon treatment was significant," says Pahan. "For example, poor-learning mice took about 150 seconds to find the right hole in the Barnes maze test. On the other hand, after one month of cinnamon treatment, poor-learning mice were finding the right hole within 60 seconds."

Pahan's research shows that the effect appears to be due mainly to sodium benzoate—a chemical produced as cinnamon is broken down in the body.

In their study, Pahan's group first tested mice in mazes to separate the good and poor learners. Good learners made fewer wrong turns and took less time to find food. 


In analyzing baseline disparities between the good and poor learners, Pahan's team found differences in two brain proteins. The gap was all but erased when cinnamon was given. 


"Little is known about the changes that occur in the brains of poor learners," says Pahan. "We saw increases in GABRA5 and a decrease in CREB in the hippocampus of poor learners. Interestingly, these particular changes were reversed by one month of cinnamon treatment." 


The researchers also examined brain cells taken from the mice. They found that sodium benzoate enhanced the structural integrity of the cells—namely in the dendrites, the tree-like extensions of neurons that enable them to communicate with other brain cells

As for himself, Pahan isn't waiting for clinical trials. He takes about a teaspoonful—about 3.5 grams—of cinnamon powder mixed with honey as a supplement every night.  
Should the research on cinnamon continue to move forward, he envisions a similar remedy being adopted by struggling students worldwide. 


The paper itself:- 


This study underlines the importance of cinnamon, a commonly used natural spice and flavoring material, and its metabolite sodium benzoate (NaB) in converting poor learning mice to good learning ones. NaB, but not sodium formate, was found to upregulate plasticity-related molecules, stimulate NMDA- and AMPA-sensitive calcium influx and increase of spine density in cultured hippocampal neurons. NaB induced the activation of CREB in hippocampal neurons via protein kinase A (PKA), which was responsible for the upregulation of plasticity-related molecules. Finally, spatial memory consolidation-induced activation of CREB and expression of different plasticity-related molecules were less in the hippocampus of poor learning mice as compared to good learning ones. However, oral treatment of cinnamon and NaB increased spatial memory consolidation-induced activation of CREB and expression of plasticity-related molecules in the hippocampus of poor-learning mice and converted poor learners into good learners. These results describe a novel property of cinnamon in switching poor learners to good learners via stimulating hippocampal plasticity. 

We have seen that cinnamon and NaB modify T cells and protect mice from experimental allergic encephalomyelitis, an animal model of multiple sclerosis. Cinnamon and NaB also upregulate neuroprotective molecules (Parkin and DJ-1) and protect dopaminergic neurons in MPTP mouse model of Parkinson’s disease.  Recently, we have seen that cinnamon and NaB attenuate the activation of p21ras, reduce the formation of reactive oxygen species and protect memory and learning in 5XFAD model of AD. Here we delineate that NaB is also capable of improving plasticity in cultured hippocampal neurons. Our conclusion is based on the following: First, NaB upregulated the expression of a number of plasticity-associated molecules (NR2A, GluR1, Arc, and PSD95) in hippocampal neurons. Second, Gabra5 is known to support long-term depression. It is interesting to see that NaB did not stimulate the expression of Gabra5 in hippocampal neurons. Third, NaB increased the number, size and maturation of dendritic spines in cultured hippocampal neurons, suggesting a beneficial role of NaB in regulating the synaptic efficacy of neurons. Fourth, we observed that NaB did not alter the calcium dependent excitability of hippocampal neurons, but rather stimulated inbound calcium currents in these neurons through ionotropic glutamate receptor. Together, these results clearly demonstrate that NaB is capable of increasing neuronal plasticity.

These results suggest that NaB and cinnamon should not cause health problems and that these compounds may have prospects in boosting plasticity in poor learners and in dementia patients. In summary, we have demonstrated that cinnamon metabolite NaB upregulates plasticity-associated molecules and calcium influx in cultured hippocampal neurons via activation of CREB. While spatial memory consolidation-induced activation of CREB and expression of plasticity-related molecules were less in the hippocampus of poor learning mice as compared to good learning ones, oral administration of cinnamon and NaB increased memory consolidation-induced activation of CREB and expression of plasticity-related molecules in vivo in the hippocampus of poor learning mice and improved their memory and learning almost to the level that observed in untreated good learning ones. These results highlight a novel plasticity-boosting property of cinnamon and its metabolite NaB and suggest that this widely-used spice and/or NaB may be explored for stimulating synaptic plasticity and performance in poor learners.


The schizophrenia trials:-







Plenty of people with schizophrenia now self-treat with NaB; just look on google.

P.S.
There is now is a small trial in autism:-

A Pilot Trial of Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, Added on Augmentative and Alternative Communication Intervention for Non-Communicative Children with Autism Spectrum Disorders

https://www.omicsonline.org/open-access/a-pilot-trial-of-sodium-benzoate-a-damino-acid-oxidase-inhibitor-added-on-augmentative-and-alternative-communication-intervention-2161-1025-1000192.php?aid=83472&view=mobile


Results: We noted improvement of communication in half of the children on benzoate. An activation effect was reported by caregivers in three of the six children, and was corroborated by clinician’s observation. Conclusion: Though the data are too preliminary to draw any definite conclusions about efficacy, they do suggest this therapy to be safe, and worthy of a double-blind placebo-controlled study with more children participated for clarification of its efficacy.